Design thinking (DT) is a five-stage process (empathize, define, ideate, prototype, and test) that guides the creation of user-centered solutions to complex problems. DT is in common use outside of science but has rarely been applied to anatomical education. The use of DT in this study identified the need for flexible access to anatomical specimens outside of the anatomy laboratory and guided the creation of a digital library of three-dimensional (3D) anatomical specimens (3D Anatomy Viewer). To test whether the resource was fit for purpose, a mixed-methods student evaluation was undertaken. Student surveys (n = 46) were employed using the system usability scale (SUS) and an unvalidated acceptability questionnaire. These verified that 3D Anatomy Viewer was usable (SUS of 72%) and acceptable (agreement range of 77%-93% on all Likert-type survey statements, Cronbach's alpha = 0.929). Supplementary interviews (n = 5) were analyzed through content analysis and revealed three main themes: (1) a credible online supplementary learning resource; (2) learning anatomy with 3D realism and interactivity; (3) user recommendations for expanding the number of anatomical models, test questions, and gamification elements. These data demonstrate that a DT framework can be successfully applied to anatomical education for creation of a practical learning resource. Anatomy educators should consider employing a DT framework where student-centered solutions to learner needs are required.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ca.24198DOI Listing

Publication Analysis

Top Keywords

anatomical specimens
12
design thinking
8
digital library
8
applied anatomical
8
anatomical education
8
specimens anatomy
8
anatomy viewer
8
learning resource
8
anatomical
6
anatomy
5

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

University of Washington, Seattle, WA, USA.

Background: The BRAIN Initiative has stimulated development of novel single cell and spatial molecular approaches to understand human brain structure and function. However, traditional methods for human brain specimen collection, including retrospective archival tissues, have not been optimized for these latest methods. A modernized approach that optimizes tissue quality, anatomical precision, and comprehensive, quantitative neuropathological assessments is needed to maximize the impact of the tremendous investment and remarkable technological advances in human neuroscience research.

View Article and Find Full Text PDF

P53-abnormal endometrial carcinomas are high-grade and aggressive tumors which should be treated with chemo-/radiotherapy. In low-grade endometrioid carcinoma (LGEC), abnormal expression of p53 is an exceptional finding and is typically accompanied by patchy p16 positivity and diffuse hormone receptor expression. Herein, we report a case of LGEC exhibiting both p53 and p16 overexpression, highlighting the diagnostic pitfalls related to such phenotype.

View Article and Find Full Text PDF

. To identify the most common reasons for consultation to a large specialty breast pathology service at a major institution. To provide insight into the overall challenges in practicing breast pathology.

View Article and Find Full Text PDF

Background: Endobronchial ultrasound guided Transbronchial Needle Aspiration (EBUS-TBNA) is the predominant method for investigation of centrally located solitary pulmonary nodules. The method is associated with good to excellent diagnostic sensitivity and specificity with the positive predictive value of the test reaching 100% and reported negative predictive values for FNA of pulmonary nodules ranging from 53% to 97%. The impact of correlating cytologic results with imaging and clinical findings for improvement of negative predictive value has been poorly studied.

View Article and Find Full Text PDF

Background: We evaluated the accuracy of magnetic resonance imaging (MRI) computed tomography (CT)-like sequences compared to normal-resolution CT (NR-CT) and super-high-resolution CT (SHR-CT) for planning of cochlear implantation.

Methods: Six cadaveric temporal bone specimens were used. 3-T MRI scans were performed using radial volumetric interpolated breath-hold (STARVIBE), pointwise-encoding time reduction with radial acquisition (PETRA), and ultrashort time of echo (UTE) sequences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!