Acrylamide (ACR) can have adverse environmental effects because of its multiple applications. Relevant scientific literatures of the existence of ACR residues in foods following processing steps have raised concern in the biochemistry, chemistry and safety of this vinyl substance. The interest has focused on the hepatotoxicity of ACR in animals and humans and on the ACR content mitigation and its detoxification. Borax (BX), as a naturally occurring antioxidant featured boron compound, was selected in this investigation to assess its possible neuro-protective potential against ACR-induced neurotoxicity. Nrf2 axis signaling pathways and detoxification response to oxidative stress after exposure to ACR in brains of rainbow trout, and the effect of BX application on reducing ACR-induced neurotoxicity were investigated. Rainbow trout were acutely exposed to ACR (12.5 mg/L) alone or simultaneously treated with BX (0.75 mg/L) during 96h. The exposed fish were sampled at 48th and 96th and oxidative stress response endpoints, 8-OHdG, Nrf2, TNF-α, caspase-3, in addition to IL-6 activities and the levels of AChE and BDNF in brain tissues of rainbow trout () were evaluated. Samples showed decreases in the levels of ACR-mediated biomarkers used to assess neural toxicity (SOD, CAT, GPx, AChE, BDNF, GSH), increased levels of MDA, MPO, DNA damage and apoptosis. ACR disrupted the Nrf2 pathway, and induced neurotoxicity. Inhibited activities' expressions under simultaneous administration experiments, revealed the protective effects of BX against ACR-induced toxicity damage. The obtained data allow the outline of early multi-parameter signaling pathways in rainbow trout.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/01480545.2024.2370916 | DOI Listing |
Appl Environ Microbiol
January 2025
Department of Biological Sciences, Minnesota State University Mankato, Mankato, Minnesota, USA.
Unlabelled: causes bacterial cold-water disease (BCWD) in salmonids and other fish, resulting in substantial economic losses in aquaculture worldwide. The mechanisms uses to cause disease are poorly understood. Despite considerable effort, most strains of have resisted attempts at genetic manipulation.
View Article and Find Full Text PDFCells
January 2025
Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milan, Italy.
Microplastics (MPs) in fish can cross the intestinal barrier and are often bioaccumulated in several tissues, causing adverse effects. While the impacts of MPs on fish are well documented, the mechanisms of their cellular internalization remain unclear. A rainbow-trout () intestinal platform, comprising proximal and distal intestinal epithelial cells cultured on an Alvetex scaffold, was exposed to 50 mg/L of MPs (size 1-5 µm) for 2, 4, and 6 h.
View Article and Find Full Text PDFIn Vitro Cell Dev Biol Anim
January 2025
Department of Biology, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, N2L 3C5, Canada.
Long dsRNA induces the expression of type I interferons (IFNs) and IFN-stimulated genes (ISGs) to establish an antiviral state. When induced prophylactically, this antiviral state can reduce the severity and mortality of viral infections. One of the limiting factors in delivering dsRNA in animal models is the lack of an effective carrier that protects the dsRNA from degradation in the extracellular space.
View Article and Find Full Text PDFToxicol Res (Camb)
January 2025
Biochemistry Science and Technology, Gaziantep University, 27310, Sehitkamil, Gaziantep, Türkiye.
Aclonifen is a diphenyl ether herbicide being included in the list of priority substances. Nevertheless, the data related to its sublethal effects on fish are limited. Therefore, the present study has been carried out to investigate the toxic effects of aclonifen in juvenile following 24, 48, 72 and 96 hours of application to sublethal concentrations of 12.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada.
Understanding the mechanisms that underlie the adaptive response of ectotherms to rising temperatures is key to mitigate the effects of climate change. We assessed the molecular and physiological processes that differentiate between rainbow trout (Oncorhynchus mykiss) with high and low tolerance to acute thermal stress. To achieve our goal, we used a critical thermal maximum trial in two strains of rainbow trout to elicit loss of equilibrium responses to identify high and low tolerance fish.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!