Background: : Hypertension is an important contributing factor to atherosclerotic cardiovascular disease (ASCVD), and multiple risk factors, many of which are implicated in metabolic disorders, contribute to the cause of hypertension. Despite the promise of multimodal data-driven prediction model, no such prediction model was available to predict the risk of ASCVD in Chinese individuals with new-onset hypertension and no history of ASCVD.

Methods: : A total of 514 patients were randomly allocated to training and verification cohorts (ratio, 7 : 3). We employed Boruta feature selection and conducted multivariate Cox regression analyses to identify variables associated with ASCVD in these patients, which were subsequently utilized for constructing the predictive model. The performance of prediction model was assessed in terms of discriminatory power (C-index), calibration (calibration curves), and clinical utility [decision curve analysis (DCA)].

Results: : This model was derived from four clinical variables: 24-h SBP coefficient of variation, 24-h DBP coefficient of variation, urea nitrogen and the triglyceride-glucose (TyG) index. Bootstrapping with 500 iterations was conducted to adjust the C-indexes were C-index = 0.731, 95% confidence interval (CI) 0.620-0.794 and C-index: 0.799, 95% CI 0.677-0.892 in the training and verification cohorts, respectively. Calibration plots with 500 bootstrapping iterations exhibited a strong correlation between the predicted and observed occurrences of ASCVD in both the training and verification cohorts. DCA analysis confirmed the clinical utility of this prediction model. The constructed nomogram demonstrated significant additional prognostic utility for ASCVD, as evidenced by improvements in the C-index, net reclassification improvement, integrated discrimination improvement, and DCA compared with the overall ASCVD risk assessment.

Conclusion: The developed longitudinal prediction model based on multimodal data can effectively predict ASCVD risk in individuals with an initial diagnosis of hypertension.

Trial Registration: : The trial was registered in the Chinese Clinical Trial Registry (ChiCTR2300074392).

Download full-text PDF

Source
http://dx.doi.org/10.1097/HJH.0000000000003798DOI Listing

Publication Analysis

Top Keywords

prediction model
24
training verification
12
verification cohorts
12
multimodal data-driven
8
model
8
atherosclerotic cardiovascular
8
cardiovascular disease
8
new-onset hypertension
8
clinical utility
8
coefficient variation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!