In this study, polymer-coated anisotropic inorganic nanowires dispersed in PBI matrix were introduced to construct 1D proton conducting channels within PBI. Ionic-liquid and solvothermal methods were used for the synthesis of ZrO and WO NWs, which were coated with PVPA and PDDA polymers to increase their proton conductivity. Our results showed that, prepared membranes have amorphous nature due to the dominating presence of PBI. SEM analysis revealed the average thickness of membrane of about 36 µm. TG/DTA analysis detected lower weight loss of WO NWs (total 2.8%) compared to ZrO NWs (18%). Proton conductivity analysis showed that, PDDA/WO NWs possess relatively 4 times higher proton conductivity (4 10 Scm) compared to PDDA/ZrO NWs (1 10 Scm) at 80 ℃. In addition, PDDA-coated WO NWs dispersed PBI membranes showed the highest fuel cell current density (1.2 A/cm) and power density (215 mW/cm) at 150 ℃ after 24 h which is nearly 2.5 times higher than pure PBI membrane. In addition, they exhibited the lowest in-situ proton resistance of about (0.47 Ω) compared with that of pure PBI membrane (0.8 Ω). Our results are introducing new concepts towards the development of thin and efficient polymer electrolyte membranes for PEM fuel cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11211458 | PMC |
http://dx.doi.org/10.1038/s41598-024-65955-9 | DOI Listing |
ACS Phys Chem Au
January 2025
School of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany.
Many important processes in cells depend on the transfer of protons through water wires embedded in transmembrane proteins. Herein, we have performed more than 55 μs all-atom simulations of the light-harvesting complex of a diatom, i.e.
View Article and Find Full Text PDFACS Phys Chem Au
January 2025
Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, 12247-014 São Paulo, Brazil.
The unique properties and versatile applications of natural deep eutectic solvents (NaDES) have sparked significant interest in the field of green chemistry. Comprised of natural components that form liquids at room temperature through strong noncovalent electrostatic interaction, these solvents are cost-effective, nontoxic, and versatile. Betaine chloride-based NaDES, in particular, have shown promise in biocatalysis and sugar extraction due to their excellent properties.
View Article and Find Full Text PDFHeliyon
January 2025
Laboratory of Molecular Toxicology, Faculty of Nature and Life Sciences, University of Jijel, 18000, Jijel, Algeria.
has been traditionally used in northeastern Algeria for treating gastrointestinal disorders, particularly ulcers. This study aimed to assess the gastroprotective, anti-inflammatory, and antioxidant properties of a crude hydroalcoholic extract derived from the leaves of , as well as its subsequent fractions. The gastroprotective effect was studied in an ethanol-induced ulcer model in mice.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Physics, City University of Hong Kong, Kowloon 999077, Hong Kong, China.
Amines are one of the most ubiquitous functional groups in molecular junctions; however, the exact regulation of the charge transport through the protonation state of an amine group in the junction backbone remains elusive. We address this question here by designing a diphenylamine molecular backbone and experimentally investigating how protonation of the central amine group affects the charge transport. Our ultraviolet-visible spectroscopy measurements demonstrate the protonation reaction of the diphenylamine compound in the presence of either trifluoroacetic acid or HCl, and we observe a consistent trend of a modestly increased conductance for diphenylamine in the presence of acid, indicating that a protonated amine group in a diphenylamine backbone slightly enhances the electron conduction.
View Article and Find Full Text PDFJ Mol Graph Model
January 2025
"VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, 11001, Belgrade, Serbia.
Technetium-99m plays a pivotal role in nuclear medicine, offering unique IMAGING capabilities due to its favorable physical and chemical properties. This study investigates the redox behavior and electronic structures of three representative Tc(V) oxo complexes, [TcO(HMPAO)], [TcO(Bicisate)], and [TcO(DMSA)], using computational techniques. Employing relativistic density functional theory with the Zero-Order Regular Approximation (ZORA), we analyze singlet-triplet energy gaps, Gibbs free energy changes, and redox potentials in neutral and acidic environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!