Porous frameworks constructed via noncovalent interactions show wide potential in molecular separation and gas adsorption. However, it remains a major challenge to prepare these materials from low-symmetry molecular building blocks. Herein, we report a facile strategy to fabricate noncovalent porous crystals through modular self-assembly of a low-symmetry helicene racemate. The P and M enantiomers in the racemate first stack into right- and left-handed triangular prisms, respectively, and subsequently the two types of prisms alternatively stack together into a hexagonal network with one-dimensional channels with a diameter of 14.5 Å. Remarkably, the framework reveals high stability upon heating to 275 °C, majorly due to the abundant π-interactions between the complementarily engaged helicene building blocks. Such porous framework can be readily prepared by fast rotary evaporation, and is easy to recycle and repeatedly reform. The refined porous structure and enriched π-conjugation also favor the selective adsorption of a series of small molecules.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11211482 | PMC |
http://dx.doi.org/10.1038/s41467-024-49865-y | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Tsinghua University, Institute of Nuclear and New Energy Technology, Room A320, Nengke Building, Qinghua Yuan No.1, Beijing, CHINA.
Exploiting supramolecular secondary building units (SSBUs) for developing porous crystalline materials represents an exciting breakthrough that extends the boundaries of reticular chemistry. However, shaping polynuclear clusters sustained by non-covalent interactions for the assembly of hydrogen-bonded frameworks remains a critical challenge. This study presents a novel strategy to stabilize SSBUs by tuning the π-stacking geometry of conjugated building blocks, facilitating the creation of hydrogen-bonded frameworks with tailored architectures for demanding gas separation.
View Article and Find Full Text PDFAnal Chem
January 2025
Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China.
The elementary mechanism and site studies of nanozyme-based inhibition reactions are ambiguous and urgently require advanced nanozymes as mediators to elucidate the inhibition effect. To this end, we develop a class of nanozymes featuring single Cu-N catalytic configurations and B-O sites as binding configurations on a porous nitrogen-doped carbon substrate (B/Cu) for inducing modulable inhibition transfer at the atomic level. The full redistribution of electrons across the Cu-N sites, induced by B-O sites incorporation, yields B/Cu with enhanced peroxidase-like activity versus Cu.
View Article and Find Full Text PDFMolecules
December 2024
IPC-Institute for Polymers and Composites, University of Minho, 4800-056 Guimarães, Portugal.
Free pectinase is commonly employed as a biocatalyst in wine clarification; however, its removal, recovery, and reuse are not feasible. To address these limitations, this study focuses on the immobilization of a commercial pectinolytic preparation (Pec) onto highly porous polymer microparticles (MPs). Seven microparticulate polyamide (PA) supports, namely PA4, PA6, PA12 (with and without magnetic properties), and the copolymeric PA612 MP, were synthesized through activated anionic ring-opening polymerization of various lactams.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China; Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China. Electronic address:
To ameliorate the limitations of corn starch (CS) processing, Radix Paeoniae Alba polysaccharide (RPAP) was used to modulate the physicochemical and digestive properties of CS. The main purpose of this paper is to investigate the effects of RPAP on the pasting, rheological, thermal, structural, and digestive properties of CS. The results show that the addition of RPAP could increase the peak viscosity and final viscosity of CS gel, and RPAP could increase the apparent viscosity, storage modulus, loss modulus, hardness, and strength of CS gel, implying that RPAP can effectively improve the pasting and viscoelasticity properties of CS.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China.
Porous supramolecular crystalline materials (PSCMs), such as hydrogen-bonded organic frameworks (HOFs), π frameworks, can be defined as a type of porous supramolecular assemblies stabilized by hydrogen-bonding, π-π stacking and other non-covalent interactions. Benefiting from the unique features of mild synthesis conditions, well-defined and synthetically tailorable structures, easy healing and regeneration, PSCMs have garnered widespread interest in research fields including molecular recognition, sensor, gas storage and separation. Moreover, they have emerged as promising photocatalysts because these PSCMs could be readily endowed with optical function, and the hydrogen-bonding and π-π stacking can offer channels for electron transfer to boost the photocatalytic activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!