Investigations of Differential Hypoxemia During Venoarterial Membrane Oxygenation with and Without Impella Support.

Cardiovasc Eng Technol

Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany.

Published: October 2024

Purpose: Venoarterial extracorporeal membrane oxygenation (VA ECMO) is used in patients with refractory cardiac or cardio-pulmonary failure. Native ventricular output interacts with VA ECMO flow and may hinder sufficient oxygenation to the heart and the brain. Further on, VA ECMO leads to afterload increase requiring ventricular unloading. The aim of the study was to investigate aortic blood flow and oxygenation for various ECMO settings and cannula positions with a numerical model.

Methods: Four different aortic cannula tip positions (ascending aorta, descending aorta, abdominal aorta, and iliac artery) were included in a model of a human aorta. Three degrees of cardiac dysfunction and VA ECMO support (50%, 75% and 90%) with a total blood flow of 6 l/min were investigated. Additionally, the Impella CP device was implemented under 50% support condition. Blood oxygen saturation at the aortic branches and the pressure acting on the aortic valve were calculated.

Results: A more proximal tip orientation is necessary to increase oxygen supply to the supra-aortic and coronary arteries for 50% and 75% support. During the 90% support scenario, proper oxygenation can be achieved independently of tip position. The use of Impella reduces afterload by 8-17 mmHg and vessel oxygenation is similar to 50% VA ECMO support. Pressure load on the aortic valve increases with more proximal tip position and is decreased during Impella use.

Conclusions: We present a simulation model for the investigation of hemodynamics and blood oxygenation with various mechanical circulatory support systems. Our results underline the intricate and patient-specific relationship between extracorporeal support, cannula tip orientation and oxygenation capacity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582155PMC
http://dx.doi.org/10.1007/s13239-024-00739-wDOI Listing

Publication Analysis

Top Keywords

oxygenation
8
membrane oxygenation
8
support
8
oxygenation ecmo
8
blood flow
8
cannula positions
8
ecmo support
8
50% 75%
8
aortic valve
8
ecmo
6

Similar Publications

Objective: This study aimed to analyze the effect of a novel supervised exercise therapy (SET) program based on intermittent treadmill walking and circuit-based moderate-intensity functional training (MIFT) on walking performance and HRQoL in PAD patients.

Design: All participants underwent a 12-week SET that involved 15 to 30 minutes of treadmill walking followed by a 15-minute moderate-intensity functional training (MIFT) continued by 12-week of follow-up. Maximum walking distance (MWD), pain-free walking distance (PFWD), gait speed and estimated peak oxygen uptake (peak VO2) were calculated through the 6-minute walk test (6-MWT) and HRQoL through the Short Form-36 (SF-36) and the Vascular Quality of Life Questionnaire-6 (VascuQol-6).

View Article and Find Full Text PDF

Microbial-induced Synthesis of nano NiFe LDH for High-efficiency Oxygen Evolution.

Chemistry

January 2025

Wuhan University of Technology - Mafangshan Campus: Wuhan University of Technology, School of Material Science and Engineeringl, CHINA.

NiFe layered double hydroxide (LDH) currently are the most efficient catalysts for the oxygen evolution reaction (OER) in alkaline environments. However, the development of high-performance low cost OER electrocatalysts using straightforward strategies remains a significant challenge. In this study, we describe an innovative microbial mineralization-based method for in situ-induced preparation of NiFe LDH nanosheets loaded on nickel foam and demonstrate that this material serves as an efficient oxygen evolution electrocatalyst.

View Article and Find Full Text PDF

Multifunctional CuBiS-BP@PEI Radiosensitizer with Enhanced Reactive Oxygen Species Activity for Multimodal Synergistic Therapy.

ACS Biomater Sci Eng

January 2025

Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China.

Development of radiosensitizers with high-energy deposition efficiency, electron transfer, and oxidative stress amplification will help to improve the efficiency of radiotherapy. To overcome the drawbacks of radiotherapy alone, it is also crucial to design a multifunctional radiosensitizer that simultaneously realizes multimodal treatment and tumor microenvironment modulation. Herein, a multifunctional radiosensitizer based on the CuBiS-BP@PEI nanoheterostructure (NHS) for multimodal cancer treatment is designed.

View Article and Find Full Text PDF

Objective: To evaluate the therapeutic effects of Kuanxiong Aerosol (KXA) on ischemic stroke with reperfusion and elucidate the underlying pharmacological mechanisms.

Methods: In vivo pharmacological effects on ischemic stroke with reperfusion was evaluated using the transient middle cerebral artery occlusion (t-MCAO) mice model. To evaluate short-term outcome, 30 mice were randomly divided into vehicle group (n=15) and KXA group (n=15).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!