Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Research has shown that X-rays and fundus images can classify gender, age group, and race, raising concerns about bias and fairness in medical AI applications. However, the potential for physiological sounds to classify sociodemographic traits has not been investigated. Exploring this gap is crucial for understanding the implications and ensuring fairness in the field of medical sound analysis. We aimed to develop classifiers to determine gender (men/women) based on heart sound recordings and using machine learning (ML). Data-driven ML analysis. We utilized the open-access CirCor DigiScope Phonocardiogram Dataset obtained from cardiac screening programs in Brazil. Volunteers < 21 years of age. Each participant completed a questionnaire and underwent a clinical examination, including electronic auscultation at four cardiac points: aortic (AV), mitral (MV), pulmonary (PV), and tricuspid (TV). We used Mel-frequency cepstral coefficients (MFCCs) to develop the ML classifiers. From each patient and from each auscultation sound recording, we extracted 10 MFCCs. In sensitivity analysis, we additionally extracted 20, 30, 40, and 50 MFCCs. The most effective gender classifier was developed using PV recordings (AUC ROC = 70.3%). The second best came from MV recordings (AUC ROC = 58.8%). AV and TV recordings produced classifiers with an AUC ROC of 56.4% and 56.1%, respectively. Using more MFCCs did not substantially improve the classifiers. It is possible to classify between males and females using phonocardiogram data. As health-related audio recordings become more prominent in ML applications, research is required to explore if these recordings contain signals that could distinguish sociodemographic features.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00246-024-03561-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!