Can we anticipate the emergence of the next pandemic antibiotic-resistant bacterial clone? Addressing such an ambitious question relies on our ability to comprehensively understand the ecological and epidemiological factors fostering the evolution of high-risk clones. Among these factors, the ability to persistently colonize and thrive in the human gut is crucial for most high-risk clones. Nonetheless, the causes and mechanisms facilitating successful gut colonization remain obscure. Here, we review recent evidence that suggests that bacterial metabolism plays a pivotal role in determining the ability of high-risk clones to colonize the human gut. Subsequently, we outline novel approaches that enable the exploration of microbial metabolism at an unprecedented scale and level of detail. A thorough understanding of the constraints and opportunities of bacterial metabolism in gut colonization will foster our ability to predict the emergence of high-risk clones and take appropriate containment strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10123-024-00550-6 | DOI Listing |
J Appl Microbiol
January 2025
Department of Population Health, College of Veterinary Medicine, 501 D.W. Brooks Dr., University of Georgia, Athens, GA 30602.
Aims: To characterize Escherichia coli O25 ST131 (O25-ST131) isolated from Georgia poultry, - a "global high-risk" clonal strain.
Methods And Results: Using multiplex PCR to detect target genes in 98 isolates of avian pathogenic E. coli (APEC) O25 recovered from avians diagnosed with colibacillosis (n=87) and healthy chicks (n=11) in Georgia, USA.
Microbiol Spectr
January 2025
Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy.
is a significant healthcare-associated pathogen, notable for its diverse virulence and antibiotic resistance profiles. This study aimed to characterize the genotypic and phenotypic diversity of isolates and evaluate their virulence using the model. Biomass production, metabolic activity, capsule formation, and siderophore production were assessed in 27 .
View Article and Find Full Text PDFSci Total Environ
January 2025
Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Ireland; Centre for One Health, University of Galway, Ireland.
Urban water environments, including canals, harbours and estuaries are susceptible to contamination with antimicrobials and drug-resistant bacteria through domestic and industrial wastewater discharges and storm water overflows. There is potential for wildlife using these waters to acquire and transmit drug-resistant bacteria and antimicrobial resistance genes (ARGs) of clinical importance. This study aimed to assess clinically important drug-resistant bacteria in urban waterfowl, particularly mute swans.
View Article and Find Full Text PDFMicrob Pathog
January 2025
Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa; School of Pharmacy, University of Jordan, Amman, 11942, Jordan.
Unlabelled: The study investigated the resistome, virulome and mobilome of multidrug resistant (MDR) Klebsiella pneumoniae and Klebsiella oxytoca clinical isolates.
Methods: A total of 46 suspected Klebsiella species (spp.) were collected from blood cultures within the uMgungundlovu District in the KwaZulu-Natal Province.
Microbiol Spectr
January 2025
Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.
The emergence of carbapenem-resistant (CRKP) poses a significant public health threat, particularly in low- and middle-income countries (LMICs) with limited surveillance and treatment options. This study examines the genetic diversity, resistance patterns, and transmission dynamics of 66 CRKP isolates recovered over 5 years (2015-2019) after the first case of CRKP was identified at a tertiary care hospital in Lima, Peru. Our findings reveal a shift from to as the dominant carbapenemase gene after 2017.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!