Background: Cervical lymphadenopathy is common in children and has diverse causes varying from benign to malignant, their similar manifestations making differential diagnosis difficult.
Objective: This study aimed to investigate whether radiomic models using conventional magnetic resonance imaging (MRI) could classify pediatric cervical lymphadenopathy.
Methods: A total of 419 cervical lymph nodes from 146 patients, and encompassing four common etiologies (Kikuchi disease, reactive hyperplasia, suppurative lymphadenitis and malignancy), were randomly divided into training and testing sets in a ratio of 7:3. For each lymph node, 1,218 features were extracted from T2-weighted images. Then, the least absolute shrinkage and selection operator (LASSO) models were used to select the most relevant ones. Two models were built using a support vector machine classifier, one was to classify benign and malignant lymph nodes and the other further distinguished four different diseases. The performance was assessed by receiver operating characteristic curves and decision curve analysis.
Results: By LASSO, 20 features were selected to construct a model to distinguish benign and malignant lymph nodes, which achieved an area under the curve (AUC) of 0.89 and 0.80 in the training and testing sets, respectively. Sixteen features were selected to construct a model to distinguish four different cervical lymphadenopathies. For each etiology, Kikuchi disease, reactive hyperplasia, suppurative lymphadenitis, and malignancy, an AUC of 0.97, 0.91, 0.88, and 0.87 was achieved in the training set, and an AUC of 0.96, 0.80, 0.82, and 0.82 was achieved in the testing set, respectively.
Conclusion: MRI-derived radiomic analysis provides a promising non-invasive approach for distinguishing causes of cervical lymphadenopathy in children.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11255022 | PMC |
http://dx.doi.org/10.1007/s00247-024-05954-0 | DOI Listing |
Comput Biol Med
January 2025
Emerging Technologies Research Lab (ETRL), College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia; Department of Computer Science, College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia. Electronic address:
- Brain tumors (BT), both benign and malignant, pose a substantial impact on human health and need precise and early detection for successful treatment. Analysing magnetic resonance imaging (MRI) image is a common method for BT diagnosis and segmentation, yet misdiagnoses yield effective medical responses, impacting patient survival rates. Recent technological advancements have popularized deep learning-based medical image analysis, leveraging transfer learning to reuse pre-trained models for various applications.
View Article and Find Full Text PDFNPJ Digit Med
January 2025
Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
Deep-learning models have shown promise in differentiating between benign and malignant lesions. Previous studies have primarily focused on specific anatomical regions, overlooking tumors occurring throughout the body with highly heterogeneous whole-body backgrounds. Using neurofibromatosis type 1 (NF1) as an example, this study developed highly accurate MRI-based deep-learning models for the early automated screening of malignant peripheral nerve sheath tumors (MPNSTs) against complex whole-body background.
View Article and Find Full Text PDFPituitary
January 2025
Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA.
Purpose: Pituitary adenomas, despite their histologically benign nature, can severely impact patients' quality of life due to hormone hypersecretion. Invasion of the medial wall of the cavernous sinus (MWCS) by these tumors complicates surgical outcomes, lowering biochemical remission rates and increasing recurrence. This study aims to share our institutional experience with the selective resection of the MWCS in endoscopic pituitary surgery.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China.
Previous studies have suggested that the presence of human epididymal protein 4 (HE4) in pleural fluid can be used to diagnose malignant pleural effusion (MPE) with moderate accuracy. However, the factors that affect the diagnostic accuracy of HE4 remain unknown. This study aimed to examine how age and sex influence the diagnostic accuracy of HE4.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Life Technologies, Division of Biotechnology, University of Turku, Medisiina D, 5th floor, Kiinamyllynkatu 10, 20520, Turku, Finland.
Glycosylation changes of circulating proteins carrying the CA19-9 antigen may offer new targets for detection methods to be explored for the diagnosis of epithelial ovarian cancer (EOC). Search for assay designs for targets initially captured by a CA19-9 antigen reactive antibody from human body fluids by probing with fluorescent nanoparticles coated with lectins or antibodies to known EOC associated proteins. CA19-9 antigens were immobilized from ascites fluids, ovarian cyst fluids or serum samples using monoclonal antibody C192 followed by probing of carrier proteins using anti-MUC16, anti-MUC1 and, anti STn antibodies and seven lectins, all separately coated on nanoparticles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!