Follicular oocyte as a potential target for severe acute respiratory syndrome coronavirus 2 infection.

Rev Med Virol

Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India.

Published: July 2024

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was reported in December 2019 and rapidly became a pandemic as coronavirus disease 2019 (COVID-19). Apart from other organs, presence of specific receptor angiotensin-converting enzyme (ACE2) and corresponding proteases such as transmembrane serine protease 2, basigin and cysteine protease cathepsin L make follicular somatic cells as well as oocyte as potential targets for SARS-CoV-2 infection. The SARS-CoV-2 causes inflammation and hypoxia that generate reactive oxygen species (ROS) in critically ill patients. In addition, a large number of casualties and insecurity of life due to repeated waves of SARS-CoV-2 infection generate psychological stress and cortisol resulting in the further generation of ROS. The excess levels of ROS under physiological range cause meiotic instability, while high levels result in oxidative stress that trigger various death pathways and affect number as well as quality of follicular oocytes. Although, emerging evidence suggests that the SARS-CoV-2 utilises cellular machinery of ovarian follicular cells, generates ROS and impairs quality of follicular oocytes, the underlying mechanism of viral entry into host cell and its negative impact on the follicular oocyte remains poorly understood. Therefore, this review summarises emerging evidence on the presence of cellular machinery for SARS-CoV-2 in ovarian follicles and the potential negative impact of viral infection on the follicular oocytes that affect ovarian functions in critically ill and stressed women.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rmv.2568DOI Listing

Publication Analysis

Top Keywords

follicular oocytes
12
follicular oocyte
8
oocyte potential
8
severe acute
8
acute respiratory
8
respiratory syndrome
8
syndrome coronavirus
8
sars-cov-2 infection
8
critically ill
8
quality follicular
8

Similar Publications

Introduction: Identifying non-invasive biomarkers which can predict the outcome of intracytoplasmic sperm injection (ICSI) is crucial, particularly in Germany where the challenges are intensified by the Embryo Protection Act. Recent research has highlighted biomarkers within the epidermal growth factor (EGF) family as central to follicular processes, although their predictive utility remains a subject of debate in the literature. Therefore, the primary objective of this study was to investigate the significance of amphiregulin concentrations in follicular fluid and gene expression in mural granulosa cells on oocyte maturation, fertilization, and embryo quality.

View Article and Find Full Text PDF

Tissue-specific vitellogenesis and 17β-estradiol facilitate ovarian maturation of the swimming crab Portunus trituberculatus.

Comp Biochem Physiol A Mol Integr Physiol

December 2024

Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Aquatic Animal Breeding Center of Shanghai University Knowledge Service Platform, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China. Electronic address:

The present study investigated the changes of expression and localization of PtVg mRNA, tissue Vg/ Vn concentrations, the contents of progesterone and 17ß-estradiol during the ovarian development of P. trituberculatus. The results showed that: 1) The most abundant mRNA levels of PtVg were found in stage IV, and hepatopancreatic PtVg mRNA was markedly greater than that in ovaries from stage II to stage V.

View Article and Find Full Text PDF

Mixed exposure to PFOA and PFOS induces oocyte apoptosis and subfertility in mice by activating the Hippo signaling pathway.

Reprod Toxicol

December 2024

Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China. Electronic address:

Per- and polyfluoroalkyl substances (PFAS) are synthetic perfluorinated compounds known for their persistence in the environment and reproduction toxicity. PFAS, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), have been identified in the follicular fluid of infertile women. However, the specific of PFOA and PFOS mixture on oocyte quality and female fertility remain unclear.

View Article and Find Full Text PDF

The Influence of Ovarian-Derived Extracellular Vesicles in Reproduction.

Adv Anat Embryol Cell Biol

January 2025

Laboratory of Molecular Morphophysiology and Development, Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil.

In this chapter, we explore the multifaceted roles of extracellular vesicles (EVs) in ovarian biology, focusing on their contributions to folliculogenesis, oocyte competence, corpus luteum function, and immune response regulation. EVs, particularly those derived from follicular fluid (ffEVs), are crucial mediators of cell-to-cell communication within the ovarian follicle, influencing processes such as meiotic progression, stress response, and hormonal regulation. We review preexisting literature, highlighting key findings on the molecular cargo of EVs, such as miRNAs and proteins, and their involvement in regulating the function of the follicle cells.

View Article and Find Full Text PDF

Background: Senility influences fertility in women and companion animals, especially horses.

Aim: This study aimed to investigate the effect of aging in horses on the daily changes in the dominant follicle (DF) dynamics and hemodynamics, antimüllerian hormone (AMH), enzymes, antioxidants, and ovarian hormones during the estrous cycle.

Methods: Ovaries of old mares ( = 5, age >20 years) and young native mares ( = 6, age <10 years) were scanned during 6 different estrous cycles from March 2022 to August 2023 with Doppler ultrasound.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!