A novel adsorbent, calcium alginate-modified HAP (Hydroxyapatite)-wood ear mushroom sticks biochar (CA-HAP), was synthesized to enhance the immobilization of Cd and Pb in soil. Over 150 days, applying CA-HAP at concentrations of 0%-3% in contaminated soils from Chenzhou City in Hunan Province (CZ) and Shenyang City in Liaoning Province (SY) resulted in decreased effective concentrations of Cd and Pb. Specifically, in CZ soil, Cd and Pb decreased by 30.9%-69.3% and 31.9%-78.6%, respectively, while in SY soil, they decreased by 27.5%-53.7% and 26.4%-62.3%, respectively. Characterization results, obtained after separating CA-HAP from the soil, indicate that complexation, co-precipitation, and ion exchange play crucial roles in the efficient immobilization of Cd and Pb by CA-HAP. Additionally, adjusting the amount of CA-HAP added allows modulation of soil pH, leading to increased soil organic matter and nutrient content. Following treatment with CA-HAP for immobilizing Cd and Pb, soil bacteria abundance and diversity increased, further promoting heavy-metal immobilization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2024.124445DOI Listing

Publication Analysis

Top Keywords

soil
9
calcium alginate-modified
8
alginate-modified hap
8
soil decreased
8
ca-hap
6
enhanced immobilization
4
immobilization cadmium
4
cadmium lead
4
lead contaminated
4
contaminated soil
4

Similar Publications

In this paper, we studied the diffusion characteristics and distribution patterns of gas leakage in soil from buried natural gas pipelines. The three-dimensional simulation model of buried natural gas pipeline leakage was established using Fluent software. Monitoring points of gas leakage mole fraction were set up at different locations, and the influence of buried depth and pressure factors on the mole fraction and diffusion of leaked gas was analyzed.

View Article and Find Full Text PDF

Climate change has caused many challenges to soil ecosystems, including soil salinity. Consequently, many strategies are advised to mitigate this issue. In this context, biochar is acknowledged as a useful addition that can alleviate the detrimental impacts of salt stress on plants.

View Article and Find Full Text PDF

Urban rail transit systems, represented by subways, have significantly alleviated the traffic pressure brought by urbanization and have addressed issues such as traffic congestion. However, as a commonly used construction method for subway tunnels, shield tunneling inevitably disturbs the surrounding soil, leading to uneven ground surface settlement, which can impact the safety of nearby buildings. Therefore, it is crucial to promptly obtain and predict the ground surface settlement induced by shield tunneling construction to enable safety warnings and evaluations.

View Article and Find Full Text PDF

Land use change can significantly alter the proportion of soil aggregates, thereby influencing aggregate stability and distribution of soil organic carbon (SOC). However, there is minimal research on the variations in the distribution of soil aggregates, aggregate stability, and SOC in soil aggregates following land use change from farmland (FL) to forest and grassland in the Loess Plateau region of China. Select six land use patterns (farmland (FL), abandoned cropland (ACL), Medicago sativa (MS), natural grassland (NG), Picea asperata Mast.

View Article and Find Full Text PDF

Mangrove forests are increasingly recognized as vital blue carbon ecosystems due to their high carbon sequestration capacity, primarily through the accumulation of soil organic carbon (SOC). Recent research highlights that, in addition to SOC, dissolved inorganic carbon (DIC), particularly in the form of bicarbonate (HCO₃⁻), plays a crucial role in carbon sequestration by being exported from these ecosystems to adjacent coastal waters. This study aims to investigate the previously unexamined mechanisms behind bicarbonate production in mangrove soils.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!