Dose-dependent effects of different parabens on food waste biorefinery for volatile fatty acids production: Insight into specific fermentation processes, substrates transformation and microbial metabolic traits.

Sci Total Environ

Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China. Electronic address:

Published: October 2024

Parabens are largely concentrated in food waste (FW) due to their large consumption as the widely used preservative. To date, whether and how they affect FW resource recovery via anaerobic fermentation is still largely unknown. This work unveiled the hormesis-like effects of two typical parabens (i.e., methylparaben and n-butylparaben) on VFAs production during FW anaerobic fermentation (i.e., parabens increased VFAs by 6.73-14.49 % at low dose but caused 82.51-87.74 % reduction at high dose). Mechanistic exploration revealed that the parabens facilitated the FW solubilization and enhanced the associated substrates' biodegradability. The low parabens enriched the functional microorganisms (e.g., Firmicutes and Actinobacteria) and upregulated those critical genes involved in VFAs biosynthesis (e.g., GCK and PK) by activating the microbial adaptive capacity (i.e., quorum sensing and two-component system). Consequently, the metabolism rates of fermentation substrates and subsequent VFAs production were accelerated. However, due to increased biotoxicity of high parabens, the functional microorganisms and relevant metabolic activities were depressed, resulting in the significant reduction of VFAs biosynthesis. Structural equation modeling clarified that microbial community was the predominant factor affecting VFAs generation, followed by metabolic pathways. This work elucidated the dose-dependent effects and underlying mechanisms of parabens on FW anaerobic fermentation, providing insights for the effective management of FW resource recovery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.174319DOI Listing

Publication Analysis

Top Keywords

anaerobic fermentation
12
dose-dependent effects
8
parabens
8
food waste
8
resource recovery
8
vfas production
8
functional microorganisms
8
vfas biosynthesis
8
vfas
6
fermentation
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!