Predicting Regional Recurrence and Prognosis in Stereotactic Body Radiation Therapy-Treated Clinical Stage I Non-small Cell Lung Cancer Using a Radiomics Model Constructed With Surgical Data.

Int J Radiat Oncol Biol Phys

Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai, China. Electronic address:

Published: November 2024

Purpose: Risk stratification of regional recurrence (RR) is clinically important in the design of adjuvant treatment and surveillance strategies in patients with clinical stage I non-small cell lung cancer (NSCLC) treated with stereotactic body radiation therapy (SBRT). This study aimed to develop a radiomics model predicting occult lymph node metastasis (OLNM) using surgical data and apply it to the prediction of RR in SBRT-treated early-stage NSCLC patients.

Methods And Materials: Patients with clinical stage I NSCLC who underwent curative surgery with systematic lymph node dissection from January 2013 to December 2018 (the training cohort) and from January 2019 to December 2020 (the validation cohort) were included. A preoperative computed tomography-based radiomics model, a clinical feature model, and a fusion model predicting OLNM were constructed. The performance of the 3 models was quantified and compared in the training and validation cohorts. Subsequently, the radiomics model was used to predict RR in a cohort of consecutive SBRT-treated early-stage NSCLC patients from 2 academic medical centers.

Results: A total of 769 patients were included. Eight computed tomography features were identified in the radiomics model, achieving areas under the curves of 0.85 (95% CI, 0.81-0.89) and 0.83 (95% CI, 0.80-0.88) in the training and validation cohorts, respectively. Nevertheless, adding clinical features did not improve the performance of the radiomics model. With a median follow-up of 40.0 (95% CI, 35.2-44.8) months, 32 of the 213 patients in the SBRT cohort developed RR and those in the high-risk group based on the radiomics model had a higher cumulative incidence of RR (P < .001) and shorter regional recurrence-free survival (P = .02), progression-free survival (P = .004) and overall survival (P = .006) than those in the low-risk group.

Conclusions: The radiomics model based on pathologically confirmed data effectively identified patients with OLNM, which may be useful in the risk stratification among SBRT-treated patients with clinical stage I NSCLC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijrobp.2024.06.010DOI Listing

Publication Analysis

Top Keywords

radiomics model
32
clinical stage
16
patients clinical
12
model
10
regional recurrence
8
stereotactic body
8
body radiation
8
stage non-small
8
non-small cell
8
cell lung
8

Similar Publications

Challenges in clinical translation of cardiac magnetic resonance imaging radiomics in non-ischemic cardiomyopathy: a narrative review.

Cardiovasc Diagn Ther

December 2024

The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, China.

Background And Objective: Radiomics is an emerging technology that facilitates the quantitative analysis of multi-modal cardiac magnetic resonance imaging (MRI). This study aims to introduce a standardized workflow for applying radiomics to non-ischemic cardiomyopathies, enabling clinicians to comprehensively understand and implement this technology in clinical practice.

Methods: A computerized literature search (up to August 1, 2024) was conducted using PubMed to identify relevant studies on the roles and workflows of radiomics in non-ischemic cardiomyopathy.

View Article and Find Full Text PDF

Objectives: To construct a prediction model based on deep learning (DL) and radiomics features of diffusion weighted imaging (DWI), and clinical variables for evaluating TP53 mutations in endometrial cancer (EC).

Methods: DWI and clinical data from 155 EC patients were included in this study, consisting of 80 in the training set, 35 in the test set, and 40 in the external validation set. Radiomics features, convolutional neural network-based DL features, and clinical variables were analyzed.

View Article and Find Full Text PDF

Background: This study aims to quantify intratumoral heterogeneity (ITH) using preoperative CT image and evaluate its ability to predict pathological high-grade patterns, specifically micropapillary and/or solid components (MP/S), in patients diagnosed with clinical stage I solid lung adenocarcinoma (LADC).

Methods: In this retrospective study, we enrolled 457 patients who were postoperatively diagnosed with clinical stage I solid LADC from two medical centers, assigning them to either a training set (n = 304) or a test set (n = 153). Sub-regions within the tumor were identified using the K-means method.

View Article and Find Full Text PDF

Objectives: To investigate how studies determine the sample size when developing radiomics prediction models for binary outcomes, and whether the sample size meets the estimates obtained by using established criteria.

Methods: We identified radiomics studies that were published from 01 January 2023 to 31 December 2023 in seven leading peer-reviewed radiological journals. We reviewed the sample size justification methods, and actual sample size used.

View Article and Find Full Text PDF

The most prevalent form of malignant tumors that originate in the brain are known as gliomas. In order to diagnose, treat, and identify risk factors, it is crucial to have precise and resilient segmentation of the tumors, along with an estimation of the patients' overall survival rate. Therefore, we have introduced a deep learning approach that employs a combination of MRI scans to accurately segment brain tumors and predict survival in patients with gliomas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!