Characterization and properties of phenolic resin doped modified lignin.

Int J Biol Macromol

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China. Electronic address:

Published: August 2024

AI Article Synopsis

  • Phenolic resins are important in industry but rely on non-renewable phenol; lignin from renewable biomass can substitute phenol, reducing costs and promoting sustainable use.
  • This study used acid-catalyzed depolymerization of waste alkaline lignin with a deep eutectic solvent to produce phenolic monomers, achieving over 85% recovery of the solvent and enabling a 50% replacement of phenol in resin synthesis.
  • The cost analysis revealed that the resin produced after multiple solvent recoveries is significantly cheaper than pure phenolic resin, and computational methods were utilized to understand the chemical reactions involved for potential improvements in resin production.

Article Abstract

Phenolic resins occupy an important position in industrial applications, but phenol, one of the raw materials for synthesis, is a non-renewable resource. Lignin, as a natural polymer containing phenolic hydroxyl groups, alcohol hydroxyl groups and other reactive groups, can replace some of the phenol in the synthesis of phenolic resins, which can reduce the amount of phenol, thus reducing the cost of phenolic resins, while effectively promoting the high value-added use of renewable biomass resources. Due to its low reactivity, alkaline lignin is usually discharged as production waste, unaware that lignin macromolecules can be modified. In this paper, the phenolic monomers were obtained by acid-catalyzed depolymerization of DES (choline chloride/p-toluenesulfonic acid or choline chloride/lactic acid) from waste alkaline lignin, and the recovery rate of the DES solution during the catalytic treatment was more than 85 %, in which the main monomer was 2-methoxy-4-(1-propyl) phenol. The degradation of alkaline lignin is still favorable after five times of DES solvent recovery. The depolymerized lignin monomer replaced phenol by 50 wt% and then ternary co-polymerized with phenol and formaldehyde to form a biomass phenol-based phenolic resin, providing a green route for phenolic resin production. The cost of resin preparation was economically calculated, and it was found that the cost of resin after accumulating 4 cycles of DES treatment was only 51.1 % of that of pure phenolic resin. The density functional theory (DFT) was used to simulate the possible radical reactions in the intermediate process of phenolic resin reaction, to explore the microscopic mechanism and competition, to provide theoretical reference for further experimental realization of resin structure control and optimization, and to improve the theoretical system of resin synthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.133430DOI Listing

Publication Analysis

Top Keywords

phenolic resin
20
phenolic resins
12
alkaline lignin
12
phenolic
10
resin
9
hydroxyl groups
8
cost resin
8
lignin
7
phenol
6
characterization properties
4

Similar Publications

Efficient Extraction of Phenols from Coal Tar and Preparation of Phenolic Resin-Based Porous Carbon for Advanced Supercapacitor Application.

Small

January 2025

State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China.

Developing simple and efficient extraction methods for phenolic substances from coal tar, which facilitate their direct transformation into high-performance electrode materials, holds considerable practical significance. In this study, amide-zinc chloride deep eutectic solvents are employed for efficient phenol extraction. The optimal phenol extraction process is subsequently investigated, and it is found that the robust hydrogen bonding interactions between solvents and phenols significantly enhance extraction efficiency.

View Article and Find Full Text PDF

The preparation of biological phenolic resin (PF) with green recyclable biomaterials instead of phenol is a research hotspot for solving current resource and environmental problems. In this study, on the basis of introducing lignin into the phenolic system, daidzein of a renewable resource with a rigid structure was selected to modify lignin-based phenolic resin (LPF), and the improvement of the mechanical and thermal properties of the modified phenolic resin under different substitution ratios was studied. The friction materials were prepared with a daidzein-modified lignin-based phenolic resin (D-LPF) as the matrix binder, and their effects on the mechanics and friction and wear properties of friction materials were investigated.

View Article and Find Full Text PDF

Development of a microbiome for phenolic metabolism based on a domestication approach from lab to industrial application.

Commun Biol

December 2024

Tianjin Key Laboratory of Industrial Biological Systems and Process Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.

Despite a lot of efforts devoted to construct efficient microbiomes, there are still major obstacles to moving from the lab to industrial applications due to the inapplicability of existing technologies or limited understanding of microbiome variation regularity. Here we show a domestication strategy to cultivate an effciient and resilient functional microbiome for addressing phenolic wastewater challenges, which involves directional domestication in shaker, laboratory water test in small-scale, gas test in pilot scale, water test in pilot scale, and engineering application in industrial scale. The domestication process includes the transition from water to gas, which provided complex transient environment for screening of a more adaptable and robust microbiome, thereby mitigating the performance disparities encountered when transitioning from laboratory experimentation to industrial engineering applications.

View Article and Find Full Text PDF

This work presents the results of research on the influence of the amount of p-toluenesulfonic acid and phosphoric acid (V) added to the phenol-formaldehyde resin (pH 7.3-7.8) on its thermal properties and on the phenol-formaldehyde-carbon composite produced on its basis.

View Article and Find Full Text PDF

Effects of Preformed Composition and Pore Size on Microstructure and Properties of SiC/SiC Composites via Reactive Melt Infiltration.

Materials (Basel)

November 2024

Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.

This study investigated the influence of preformed composition and pore size on the microstructure and properties of SiC/SiC composites fabricated via reactive melt infiltration (RMI). The process began with the impregnation of SiC fiber cloth with phenolic resin, followed by lamination and pyrolysis. Subsequent steps included further impregnations with phenolic resin, SiC slurry, and carbon black slurry, each followed by additional pyrolysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!