A MOF-on-MOF composite derivative material named ZIF-67@Ce-MOF-600 was designed and synthesized. The preparation of ZIF-67@Ce-MOF-600 was optimized from the aspects of the ratio of metal and ligand, heat-treatment temperature. It was demonstrated by XRD, FT-IR, SEM-EDS and TEM. The optimum conditions for the activation of PMS by ZIF-67@Ce-MOF-600 for the degradation of tetracycline (TC) were investigated by adjusting the catalyst dosage, TC, pH, peoxymonosulfate (PMS) concentration, and different kinds of water, co-existing anions and pollution. Under optimal conditions (20 mg catalysts and 50 mg PMS added) in 100 mL of tetracyclines (TC) solvent (20 mg TC/L), the removal rate could reach up to 99.2% and after five cycles was 70.5%. The EPR results indicated the presence of free radicals and non-free radical, among which free radicals intended to play a major role in the degradation process. Its possible degradation pathways and attack sites were analyzed by liquid-phase mass spectrometry and DFT analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.142676 | DOI Listing |
J Biochem Mol Toxicol
January 2025
Department of Medical Biochemistry, Faculty of Medicine, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey.
Neurodegenerative diseases are significant health concerns that have a profound impact on the quality and duration of life for millions of individuals. These diseases are characterized by pathological changes in various brain regions, specific genetic mutations associated with the disease, deposits of abnormal proteins, and the degeneration of neurological cells. As neurodegenerative disorders vary in their epidemiological characteristics and vulnerability of neurons, treatment of these diseases is usually aimed at slowing disease progression.
View Article and Find Full Text PDFPak J Pharm Sci
January 2025
Laboratory of Aromatic and Medicinal Plants, Borj Cedria Biotechnology Center, Hammam-Lif, Tunisia.
Plants constitute a source of natural phytochemical components which are widely known for their potential biological activities. This work concerned a study of the antioxidant, anticancer and anti-inflammatory activities of squirting cucumber (Ecballium elaterium L.) parts (flowers, fruits, leaves and stems) using different solvent extracts (cyclohexane, dichloromethane, ethyl acetate, methanol and water).
View Article and Find Full Text PDFBMC Vet Res
January 2025
Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
This study aimed to evaluate alternative in vivo treatment trials using natural products for ectoparasitic infestation on Nile tilapia; these two products were not previously used in the treatment of parasitic fish diseases. So, a total of 400 Oreochromis niloticus (O. niloticus) fish measured 10-15 cm in length; 350 from a fish farm in (Kafr Elsheikh and 50 from Nile River (Al Bahr Al Aazam), Egypt.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
Age-related macular degeneration (AMD) is a major cause of vision loss among adults. We investigated the protective effects of passion fruit seed extract (PFSE) and its rich polyphenol piceatannol in an AMD cell model in which human retinal pigment epithelial ARPE-19 cells were exposed to hydrogen peroxide (HO). Using a cell viability WST-8 assay, we revealed that PFSE and piceatannol increased the cellular viability of ARPE-19 cells by 130% and 133%, respectively.
View Article and Find Full Text PDFNat Commun
January 2025
NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
Reactive oxygen species exacerbate nonalcoholic steatohepatitis (NASH) by oxidizing macromolecules; yet how they promote NASH remains poorly understood. Here, we show that peroxidase activity of global hepatic peroxiredoxin (PRDX) is significantly decreased in NASH, and palmitic acid (PA) binds to PRDX1 and inhibits its peroxidase activity. Using three genetic models, we demonstrate that hepatic PRDX1 protects against NASH in male mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!