Melanoma is a type of tumor skin with high metastatic potential. Reconstructed human skin, development for pre-clinic assay, are make using primary human cells, but with same limitations. The aim this study was to characterize a cell culture model, with structure similar to human skin containing melanoma cells entirely from cell lines. Reconstructed skin with melanoma were development using human fibroblasts (MRC5), human epidermal keratinocytes (HaCat), and human melanoma (SK-MEL-28) embedded in collagen type I. The structure was characterized by hematoxylin-eosin stained, as well as points of melanoma cell invasion, which was associated with activity of MMPs (MMP-2 and MMP-9) by zymographic method. Then, the gene expression of the target molecular mechanisms involved in melanoma progression were evaluated. Here, the model development showed a region epidermis organized and separated from the dermis, with fibroblast cells confined and melanoma cells form delimited area invasion. MMP-2 and MMP-9 were identified during of cell culture and gene expression of BRAF, NRAS, and Vimentin was confirmed. The proposed model provides one more opportunity to study in vitro tumor biology of melanoma and also to allows the study of new drugs with more reliable results then whats we would find in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tiv.2024.105883 | DOI Listing |
cutaneous melanoma has often unpredictable lymphatic drainage patterns, especially at the level of the trunk, head and neck regions. Sentinel lymph node biopsy (SLNB) is an important prognostic tool that accurately assesses regional lymph node involvement and guides therapeutic decisions. Material and this prospective study involved 104 patients diagnosed with cutaneous melanoma who underwent SLNB using a radioactive tracer.
View Article and Find Full Text PDFBMC Public Health
December 2024
Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
Background: Cancer is one of the leading causes of death in children and adolescents, with a significant concentration in low and middle-income countries. Previous research has identified disparities in cancer incidence and mortality based on a country's level of development. The Middle East and North Africa (MENA) region comprises of countries with heterogeneous income and development levels.
View Article and Find Full Text PDFJ Invest Dermatol
December 2024
University of Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM U1065, Nice, France. Electronic address:
CLEC12B is a C-type lectin receptor involved in the inhibition of natural killers-mediated cytotoxicity. We have previously shown that CLEC12B is predominantly expressed on melanocytes, inhibits melanin production and pigmentation as well as proliferation of melanoma. To date, the role of CLEC12B in skin immunity is unknown.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China. Electronic address:
Melanoma, an aggressive skin tumor, is prone to metastasis, significantly reducing patient survival rates once it occurs. Tumor microvascularity is a key factor in metastasis, making the inhibition of microvascular formation crucial. Emerging photothermal therapy (PTT) and microneedles (MNs) have garnered attention due to their non-invasive and controllable nature.
View Article and Find Full Text PDFBackground: Skin cancer poses a significant global health threat, with early detection being essential for successful treatment. While deep learning algorithms have greatly enhanced the categorization of skin lesions, the black-box nature of many models limits interpretability, posing challenges for dermatologists.
Methods: To address these limitations, SkinSage XAI utilizes advanced explainable artificial intelligence (XAI) techniques for skin lesion categorization.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!