Impaired photoacclimation in a kleptoplastidic dinoflagellate reveals physiological limits of early stages of endosymbiosis.

Curr Biol

Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144, Adaptation et Diversité en Milieu Marin, group Ecology of Marine Plankton, Station Biologique de Roscoff, Place Georges Teissier, Roscoff 29680, France. Electronic address:

Published: July 2024

Dinophysis dinoflagellates are predators of Mesodinium ciliates, from which they retain only the plastids of cryptophyte origin. The absence of nuclear photosynthetic cryptophyte genes in Dinophysis raises intriguing physiological and evolutionary questions regarding the functional dynamics of these temporary kleptoplastids within a foreign cellular environment. In an experimental setup including two light conditions, the comparative analysis with Mesodinium rubrum and the cryptophyte Teleaulax amphioxeia revealed that Dinophysis acuminata possessed a smaller and less dynamic functional photosynthetic antenna for green light, a function performed by phycoerythrin. We showed that the lack of the cryptophyte nucleus prevented the synthesis of the phycoerythrin α subunit, thereby hindering the formation of a complete phycoerythrin in Dinophysis. In particular, biochemical analyses showed that Dinophysis acuminata synthesized a poorly stable, incomplete phycoerythrin composed of chromophorylated β subunits, with impaired performance. We show that, consequently, a continuous supply of new plastids is crucial for growth and effective photoacclimation in this organism. Transcriptome analyses revealed that all examined strains of Dinophysis spp. have acquired the cryptophyte pebA and pebB genes through horizontal gene transfer, suggesting a potential ability to synthesize the phycobilin pigments bound to the cryptophyte phycoerythrin. By emphasizing that a potential long-term acquisition of the cryptophyte plastid relies on establishing genetic independence for essential functions such as light harvesting, this study highlights the intricate molecular challenges inherent in the enslavement of organelles and the processes involved in the diversification of photosynthetic organisms through endosymbiosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2024.05.066DOI Listing

Publication Analysis

Top Keywords

dinophysis acuminata
8
cryptophyte
7
dinophysis
6
phycoerythrin
5
impaired photoacclimation
4
photoacclimation kleptoplastidic
4
kleptoplastidic dinoflagellate
4
dinoflagellate reveals
4
reveals physiological
4
physiological limits
4

Similar Publications

Article Synopsis
  • Diarrhetic shellfish poisoning (DSP) is caused by consuming bivalves that have ingested toxins from algae, specifically Dinophysis acuminata.
  • Research was conducted in 2021 and 2022 to measure the clearance rates of three bivalve species (Crassostrea virginica, Mercenaria mercenaria, and Mytilus edulis) during algal blooms of D. acuminata at various sites in New York.
  • The study found that C. virginica had significantly higher clearance rates and toxin accumulation levels compared to M. edulis and M. mercenaria, with certain bivalve species exceeding FDA guidelines for toxin levels during bloom events.
View Article and Find Full Text PDF

Nationwide seasonal monitoring of lipophilic marine algal toxins in shellfish and causative microalgae along the coasts of South Korea.

Mar Pollut Bull

October 2024

Department of Earth, Environmental & Space Sciences, Chungnam National University, Daejeon 34134, Republic of Korea; Department of Marine Environmental Sciences & Institute of Marine Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea. Electronic address:

In this study, lipophilic marine algal toxins (LMATs)-producing microalgae were identified at 23 sites along the coasts of Korea, and distribution characteristics of LMATs in phytoplankton and mussels were investigated. The causative microalgae, including Gonyaulux spinifera, Dinophysis acuminata, D. caudata, and D.

View Article and Find Full Text PDF

Dinophysis, a mixotrophic dinoflagellate that is known to prey on the ciliate Mesodinium rubrum, and retain its chloroplasts, is responsible for diarrhetic shellfish poisoning (DSP) in humans and has been identified on all U.S. coasts.

View Article and Find Full Text PDF

Impaired photoacclimation in a kleptoplastidic dinoflagellate reveals physiological limits of early stages of endosymbiosis.

Curr Biol

July 2024

Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144, Adaptation et Diversité en Milieu Marin, group Ecology of Marine Plankton, Station Biologique de Roscoff, Place Georges Teissier, Roscoff 29680, France. Electronic address:

Dinophysis dinoflagellates are predators of Mesodinium ciliates, from which they retain only the plastids of cryptophyte origin. The absence of nuclear photosynthetic cryptophyte genes in Dinophysis raises intriguing physiological and evolutionary questions regarding the functional dynamics of these temporary kleptoplastids within a foreign cellular environment. In an experimental setup including two light conditions, the comparative analysis with Mesodinium rubrum and the cryptophyte Teleaulax amphioxeia revealed that Dinophysis acuminata possessed a smaller and less dynamic functional photosynthetic antenna for green light, a function performed by phycoerythrin.

View Article and Find Full Text PDF

This study aimed to explore the effects of different light intensities on the ecophysiology of eight new Dinophysis isolates comprising four species (D. acuminata, D. ovum, D.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!