Size, shape, and elemental composition as predictors of microplastic surface erosion.

J Hazard Mater

Leibniz Institute of Freshwater Ecology and Inland Fisheries, Department of Experimental Limnology, Alte Fischerhuette 2, 16775 Stechlin, Germany; Postdam University, Institute of Biology and Biochemistry, Maulbeerallee 2, D-14469 Potsdam, Germany. Electronic address:

Published: September 2024

The degradation of surfaces and its possible dependence on shape, size, and elemental composition of plastic particles were subjected. The surfaces of 146 microplastics were classified from smooth to fully eroded (%) by SEM/EDS. Structural elements and various additives were found on microplastics depending on their shapes. The surface of plastic items > 100 µm in length showed a relatively more eroded area than smaller ones, regardless of their shapes. Depending on shape, the percentage of surface erosion of irregularly shaped fragments < 100 µm was significantly enhanced compared to microbeads of the same size. These results may provide insights into assessing potential risks posed by microplastics and improve our understanding of the role of these parameters concerning possible adverse health effects on the environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.134961DOI Listing

Publication Analysis

Top Keywords

elemental composition
8
surface erosion
8
size shape
4
shape elemental
4
composition predictors
4
predictors microplastic
4
microplastic surface
4
erosion degradation
4
degradation surfaces
4
surfaces dependence
4

Similar Publications

Investigate the impact of antimicrobial photodynamic therapy (aPDT) using different photosensitizers (PSs) such as indocyanine green (IG), curcumin (CC), and methylene blue (MB), with or without intracanal application of calcium hydroxide (CH), on the push-out bond strength of glass-fiber posts (GFPs) to intraradicular dentin, the chemical composition of the root substrate, and the sealing of the adhesive interface across different thirds of intraradicular dentin. A total of 112 bovine teeth underwent biomechanical preparation and were divided into eight experimental groups (n = 14 each): Negative control with deionized water; positive control with deionized water + CH; IG group with indocyanine green and infrared laser; IG + CH group; CC group with curcumin and blue LED; CC + CH group; MB group with methylene blue and red laser; and MB + CH group. The push-out bond strength was measured using a universal testing machine (n = 8), and scanning electron microscopy characterized the fracture patterns.

View Article and Find Full Text PDF

Unlabelled: This study addresses longstanding questions concerning the ore sources used in the first series of coins of ancient Athens known as the (c.540-c.500 BCE) by combining comprehensive numismatic data on 22 coins (16 new and 6 legacy analyses) with lead isotope and surface elemental measurements (MC-ICP-MS and XRF).

View Article and Find Full Text PDF

Ce1-xMnxVO4 with Improved Activity for Low-Temperature Catalytic Reduction of NO with NH3.

Chem Asian J

January 2025

Fudan University, Department of Environmental Science and Engineering, Shanghai Handan Road 220, 200433, Shanghai, CHINA.

Novel Ce1-xMnxVO4 catalysts prepared via modified hydrothermal synthesis were used in selective catalytic reduction of NO using NH3 (NH3-SCR). The Ce1-xMnxVO4 catalysts displayed optimum NO removal efficiency at 250 oC. Physicochemical properties including crystal type, morphology, particle size, elemental composition, BET surface area, chemical bond, and valence state were studied by XRD, TEM, EDS, N2 adsorption-desorption, Raman spectroscopy, and XPS.

View Article and Find Full Text PDF

An obligately anaerobic, spore-forming sulphate-reducing bacterium, strain SB140, was isolated from a long-term continuous enrichment culture that was inoculated with peat soil from an acidic fen. Cells were immotile, slightly curved rods that stained Gram-negative. The optimum temperature for growth was 28 °C.

View Article and Find Full Text PDF

Low Molecular Weight Biobased Aromatics from Pyrolysis Liquids Using Zeolites: Yield Improvements by Using Pyrolysis Oil Fractions.

ACS Omega

January 2025

Green Chemical Reaction Engineering, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.

Pyrolysis liquids from lignocellulosic biomass have the potential to be used as a feed for aromatics such as benzene, toluene, and xylenes (BTX) using catalytic upgrading with zeolites. We here report an experimental study on the conversion of various pyrolysis oil fractions to determine the most suitable one for BTX synthesis. For this purpose, the pyrolysis liquid was fractionated using several extraction/distillation steps to give four fractions with different chemical compositions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!