Background: Physical activity is emerging as an outcome measure. Accelerometers have become an important tool in monitoring physical behavior, and newer analytical approaches of recognition methods increase the degree of details. Many studies have achieved high performance in the classification of physical behaviors through the use of multiple wearable sensors; however, multiple wearables can be impractical and lower compliance.

Objective: The aim of this study was to develop and validate an algorithm for classifying several daily physical behaviors using a single thigh-mounted accelerometer and a supervised machine-learning scheme.

Methods: We collected training data by adding the behavior classes-running, cycling, stair climbing, wheelchair ambulation, and vehicle driving-to an existing algorithm with the classes of sitting, lying, standing, walking, and transitioning. After combining the training data, we used a random forest learning scheme for model development. We validated the algorithm through a simulated free-living procedure using chest-mounted cameras for establishing the ground truth. Furthermore, we adjusted our algorithm and compared the performance with an existing algorithm based on vector thresholds.

Results: We developed an algorithm to classify 11 physical behaviors relevant for rehabilitation. In the simulated free-living validation, the performance of the algorithm decreased to 57% as an average for the 11 classes (F-measure). After merging classes into sedentary behavior, standing, walking, running, and cycling, the result revealed high performance in comparison to both the ground truth and the existing algorithm.

Conclusions: Using a single thigh-mounted accelerometer, we obtained high classification levels within specific behaviors. The behaviors classified with high levels of performance mostly occur in populations with higher levels of functioning. Further development should aim at describing behaviors within populations with lower levels of functioning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11135216PMC
http://dx.doi.org/10.2196/38512DOI Listing

Publication Analysis

Top Keywords

physical behaviors
12
monitoring physical
8
physical behavior
8
algorithm
8
high performance
8
single thigh-mounted
8
thigh-mounted accelerometer
8
training data
8
existing algorithm
8
standing walking
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!