Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Hashimoto thyroiditis (HT) is an autoimmune thyroid disease and the leading cause of hypothyroidism in areas with sufficient iodine intake. The quality-of-life impact and financial burden of hypothyroidism and HT highlight the need for additional research investigating the disease etiology with the aim of revealing potential modifiable risk factors.
Objective: Implementation of measures against such risk factors, once identified, has the potential to lessen the financial burden while also improving the quality of life of many individuals. Therefore, we aimed to examine the potential seasonality of HT in Europe using the Google Trends data to explore whether there is a seasonal characteristic of Google searches regarding HT, examine the potential impact of the countries' geographic location on the potential seasonality, and identify potential modifiable risk factors for HT, thereby inspiring future research on the topic.
Methods: Monthly Google Trends data on the search topic "Hashimoto thyroiditis" were retrieved in a 17-year time frame from January 2004 to December 2020 for 36 European countries. A cosinor model analysis was conducted to evaluate potential seasonality. Simple linear regression was used to estimate the potential effect of latitude and longitude on seasonal amplitude and phase of the model outputs.
Results: Of 36 included European countries, significant seasonality was observed in 30 (83%) countries. Most phase peaks occurred in spring (14/30, 46.7%) and winter (8/30, 26.7%). A statistically significant effect was observed regarding the effect of geographical latitude on cosinor model amplitude (y = -3.23 + 0.13 x; R=0.29; P=.002). Seasonal increases in HT search volume may therefore be a consequence of an increased incidence or higher disease activity. It is particularly interesting that in most countries, a seasonal peak occurred in spring and winter months; when viewed in the context of the statistically significant impact of geographical latitude on seasonality amplitude, this may indicate the potential role of vitamin D levels in the seasonality of HT.
Conclusions: Significant seasonality of HT Google Trends search volume was observed in our study, with seasonal peaks in most countries occurring in spring and winter and with a significant impact of latitude on seasonality amplitude. Further studies on the topic of seasonality in HT and factors impacting it are required.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11135219 | PMC |
http://dx.doi.org/10.2196/38976 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!