Why are the inner and outer sides of many flower petals differently coloured?

Plant Biol (Stuttg)

CAS Key Laboratory of Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.

Published: August 2024

The flower perianth has various, non-mutually exclusive functions, such as visual signalling to pollinators and protecting the reproductive organs from the elements and from florivores, but how different perianth structures and their different sides play a role in these functions is unclear. Intriguingly, in many species there is a clear colour difference between the different sides of the perianth, with colour patterns or pigmentation present on only one side. Any adaptive benefit from such colour asymmetry is unclear, as is how the asymmetry evolved. In this viewpoint paper, we address the phenomenon of flowers with differently coloured inner and outer perianth sides, focusing on petals of erect flowers. Guided by existing literature and our own observations, we delineate three non-mutually exclusive evolutionary hypotheses that may explain the factors underlying differently coloured perianth sides. The pollen-protection hypothesis predicts that the outer side of petals contributes to protect pollen against UV radiation, especially during the bud stage. The herbivore-avoidance hypothesis predicts that the outer side of petals reduces the flower's visibility to herbivores. The signalling-to-pollinators hypothesis predicts that flower colours evolve to increase conspicuousness to pollinators. The pollen-protection hypothesis, the herbivore-avoidance hypothesis, and the signalling-to-pollinators hypothesis generate largely but not entirely overlapping predictions about the colour of the inner and outer side of the petals. Field and laboratory research is necessary to disentangle the main drivers and adaptive significance of inner-outer petal side colour asymmetry.

Download full-text PDF

Source
http://dx.doi.org/10.1111/plb.13680DOI Listing

Publication Analysis

Top Keywords

inner outer
12
hypothesis predicts
12
outer side
12
side petals
12
non-mutually exclusive
8
colour asymmetry
8
differently coloured
8
perianth sides
8
pollen-protection hypothesis
8
predicts outer
8

Similar Publications

Enhancing nitrogen (N) fixation in rice plants can reduce N fertilizer application and contribute to sustainable rice production, particularly under low-N conditions. However, detailed microbial and metabolic characterization of N fixation in rice stems, unlike in the well-studied roots, has not been investigated. Therefore, the aim of this study was to determine the active N-fixing sites, their diazotroph communities, and the usability of possible carbon sources in stems compared with roots.

View Article and Find Full Text PDF

Purpose: Using a fully automated multitask deep learning method, which enabled simultaneous segmentation and quantification of all major anterior segment structures with swept-source optical coherence tomography (SS-OCT), we aimed to investigate the three-dimensional (3D) alterations in iris morphology before and after implantable collamer lens (ICL) surgery.

Methods: All enrolled patients underwent anterior segment SS-OCT (ANTERION) within one week before and after ICL surgery. A multitask network automatically performed iris SS-OCT image segmentation and quantitative measurements of 3D iris morphology (iris thickness and volume of the inner 1-mm annular area and the outer 1-2-mm annular area, iris curvature [I-Curve], and iris smooth index [SI]).

View Article and Find Full Text PDF

Proximal protection devices for carotid artery stenting - A benchtop assessment of flow reversal performance.

AJNR Am J Neuroradiol

January 2025

From the Department of Radiology (J.L., E.A.B., C.B., J.C., R.K., W.B., D.F.K), and Department of Neurologic Surgery (Y.C.S., R.K., W.B.), Mayo Clinic, Rochester, MN, United States; Department of Stroke Research (J.L.), Vall d'Hebron Research Institute, Barcelona, Spain; From the Global Institute of Future Technology (Y.L.), Shanghai Jiao Tong University, Shanghai, China; Department of Neurointerventional Radiology (J.C.), Bicetre University Hospital, Le Kremlin Bicetre, France.

Background And Purpose: Proximal protection devices, such as TransCarotid Artery Revascularization (TCAR, SilkRoad Medical, Sunnyvale), aim to yield better outcomes in carotid artery stenting (CAS) than distal protection devices by preventing plaque embolization to the brain. However, transfemoral catheters may not fully reverse flow from the external carotid artery (ECA) to the internal carotid artery (ICA). We assess a new balloon-sheath device, Femoral Flow Reversal Access for Carotid Artery Stenting (FFRACAS), for this purpose.

View Article and Find Full Text PDF

Introduction: Propofol is a widely used sedative-hypnotic agent for critically ill patients requiring invasive mechanical ventilation (IMV). Despite its clinical benefits, propofol is associated with increased risks of hypertriglyceridemia. Early identification of patients at risk for propofol-associated hypertriglyceridemia is crucial for optimising sedation strategies and preventing adverse outcomes.

View Article and Find Full Text PDF

Barriers and Facilitators of Implementing Colorectal Cancer Screening Management in China: A Mixed-Methods Study.

Cancer Nurs

January 2025

Author Affiliations: Nursing Department (Drs Shi and Zhang and Mss Zhang and Xu) and General Practice Clinic (Mr Cui), The Fourth Affiliated Hospital of Harbin Medical University; and School of Nursing, Harbin Medical University (Dr Sun), Harbin, Heilongjiang, China.

Background: Colorectal cancer is a major cause of cancer-related deaths in China. Timely screening is essential for reducing mortality, but implementing comprehensive programs in Chinese healthcare settings is challenging.

Objective: This study identifies barriers and facilitators to colorectal cancer screening (CRCS) in China and recommends effective implementation strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!