The range of an electrically assisted bicycle, which is constrained by the rider's cycling ability and the battery capacity, is heavily influenced by rolling resistance. Furthermore, the magnitude of rolling resistance affects commuters' motivation to decide whether to cycle or to choose another way to commute. This paper presents a way to simulate the transient rolling resistance of bicycle tyres as a function of ambient temperature. The significance of the change in driving resistance at different ambient temperatures is demonstrated through the range simulation of an electrically assisted bicycle at varying ambient temperatures. A representative driving cycle for bicycle commuters was created, enabling comparison of dynamic behaviour in a standardised set, to evaluate the effect of ambient temperature on the battery capacity and the increase in driving resistances. To the authors' knowledge, this kind of model has not previously been created for bicycles. The model calculates tyre temperature based on the heat transfer, considering the heating-i. e., rolling resistance-and cooling effects-i. e., convective and radiative cooling. The decrease in tyre temperature results in an increase in rolling resistance and a decrease in the battery capacity, which was considered in the simulations. The results show significantly increased energy demand at a very low ambient temperature (down to -30°C) compared to + 20°C. The novelty of this article is simulating energy expenditure of bicycle dynamically as a function of ambient temperature. This model includes a temperature-dependent transient bicycle rolling resistance model as well as a battery capacity model. The findings provide researchers with a better comprehension of parameters affecting energy expenditure of bicycles at different ambient or tyre temperatures. The models can be used as a tool during the design process of bicycles to quantify the required battery capacities at different climates. In addition, traffic planners can use the model to assess the effect of changes in infrastructure on motivation to utilise bicycles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11210805 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0302821 | PLOS |
J Cardiovasc Dev Dis
December 2024
Postgraduate Program in Physical Education, Universidade Federal do Rio de Janeiro (EEFD/UFRJ), Rio de Janeiro 21941-599, Brazil.
Background: This study aimed to investigate the acute effects of different pre-ST strategies on muscular performance and blood pressure (BP) responses in recreationally strength-trained women.
Methods: Twelve overweight women with normal BP were recruited and performed six experimental protocols in a randomized order: (1) control protocol (CC), where BP was assessed without exercises performed; (2) ST; (3) foam rolling warm-up followed by ST (FR + ST); (4) specific warm-up followed by ST (SW + ST); (5) aerobic exercise followed by ST (AE + ST); and (6) stretching exercises followed by ST (SE + ST). ST consisted of three sets at 80% of 10 repetition maximum with a self-suggested rest interval between sets for bench press, back squat, bench press 45°, front squat, lat pull-down, leg press, shoulder press, and leg extension.
J Mater Chem B
January 2025
Department of Chemical Engineering, University of Seoul, Republic of Korea.
Current cancer treatments, including chemotherapy, surgery, and radiation, often present significant challenges such as severe side effects, drug resistance, and damage to healthy tissues. To address these issues, we introduce a virus-inspired RNA mimicry approach, specifically through the development of uridine-rich nanoparticles (UNPs) synthesized using the rolling circle transcription (RCT) technique. These UNPs are designed to mimic the poly-U tail sequences of viral RNA, effectively engaging RIG-I-like receptors (RLRs) such as MDA5 and LGP2 in cancer cells.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 China.
Superhydrophobic surfaces have been demonstrated to exhibit excellent anti-icing effects, but they are susceptible to the loss of ice repellency as a result of external impacts. This paper proposes a novel bionic armour structure that combines an armour structure with an arrowroot bionic structure. A composite method combining laser etching and chemical modification was employed to achieve superhydrophobicity on the surface of the aluminium alloy.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
Tumor-derived extracellular vesicles (T-EVs) PD-L1 are an important biomarker for predicting immunotherapy response and can help us understand the mechanism of resistance to immunotherapy. However, this is due to the interference from a large proportion of nontumor-derived EVs. It is still challenging to accurately analyze T-EVs PD-L1 in complex human fluids.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037 China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037 China. Electronic address:
Poly(N-isopropylacrylamide) (PNIPAM) composite hydrogels have recently emerged as promising candidates for soft hydrogel actuators. However, developing a facile and fast method to obtain multifunctional PNIPAM hydrogel actuators with simulating biological versatility remains a major challenge. Herein, we developed a fast-redox initiation system to prepare PNIPAM/sodium carboxymethyl cellulose (CMC)/TCT MXene nanocomposite hydrogel with multidirectional actuating behaviors and improved mechanical properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!