Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Protein adenosine diphosphate (ADP)-ribosylation is crucial for a proper immune response. Accordingly, viruses have evolved ADP-ribosyl hydrolases to remove these modifications, a prominent example being the SARS-CoV-2 NSP3 macrodomain, "Mac1". Consequently, inhibitors are developed by testing large libraries of small molecule candidates, with considerable success. However, a relatively underexplored angle in design pertains to the synthesis of structural substrate mimics. Here, we present the synthesis and biophysical activity of novel adenosine diphosphate ribose (ADPr) analogues as SARS-CoV-2 NSP3 Mac1 inhibitors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11249776 | PMC |
http://dx.doi.org/10.1021/acs.orglett.4c01792 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!