Segmenting unknown or anomalous object instances is a critical task in autonomous driving applications, and it is approached traditionally as a per-pixel classification problem. However, reasoning individually about each pixel without considering their contextual semantics results in high uncertainty around the objects' boundaries and numerous false positives. We propose a paradigm change by shifting from a per-pixel classification to a mask classification. Our mask-based method, Mask2Anomaly, demonstrates the feasibility of integrating a mask-classification architecture to jointly address anomaly segmentation, open-set semantic segmentation, and open-set panoptic segmentation. Mask2Anomaly includes several technical novelties that are designed to improve the detection of anomalies/unknown objects: i) a global masked attention module to focus individually on the foreground and background regions; ii) a mask contrastive learning that maximizes the margin between an anomaly and known classes; iii) a mask refinement solution to reduce false positives; and iv) a novel approach to mine unknown instances based on the mask- architecture properties. By comprehensive qualitative and qualitative evaluation, we show Mask2Anomaly achieves new state-of-the-art results across the benchmarks of anomaly segmentation, open-set semantic segmentation, and open-set panoptic segmentation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TPAMI.2024.3419055 | DOI Listing |
Biomed Opt Express
December 2024
Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China (UESTC), Huzhou 313001, China.
The problems of complex background, low quality of finger vein images, and poor discriminative features have been the bottleneck of feature extraction and finger vein recognition. To this end, we propose a feature extraction algorithm based on the open-set testing protocol. In order to eliminate the interference of irrelevant areas, this paper proposes the idea of segmentation-assisted classification, that is, using the rough mask of the finger vein to constrain the feature learning process so that the network can focus on the vein area and learn greater weight for the vein.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
December 2024
Continual learning, also known as incremental learning or life-long learning, stands at the forefront of deep learning and AI systems. It breaks through the obstacle of one-way training on close sets and enables continuous adaptive learning on open-set conditions. In the recent decade, continual learning has been explored and applied in multiple fields especially in computer vision covering classification, detection and segmentation tasks.
View Article and Find Full Text PDFPLoS One
August 2024
College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University, Guangzhou, China.
Accurately extracting the Region of Interest (ROI) of a palm print was crucial for subsequent palm print recognition. However, under unconstrained environmental conditions, the user's palm posture and angle, as well as the background and lighting of the environment, were not controlled, making the extraction of the ROI of palm print a major challenge. In existing research methods, traditional ROI extraction methods relied on image segmentation and were difficult to apply to multiple datasets simultaneously under the aforementioned interference.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
December 2024
Segmenting unknown or anomalous object instances is a critical task in autonomous driving applications, and it is approached traditionally as a per-pixel classification problem. However, reasoning individually about each pixel without considering their contextual semantics results in high uncertainty around the objects' boundaries and numerous false positives. We propose a paradigm change by shifting from a per-pixel classification to a mask classification.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
October 2024
Open-set segmentation can be conceived by complementing closed-set classification with anomaly detection. Many of the existing dense anomaly detectors operate through generative modelling of regular data or by discriminating with respect to negative data. These two approaches optimize different objectives and therefore exhibit different failure modes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!