Tomato red spider mite Tetranychus evansi Baker and Pritchard (Acari: Tetranychidae) is a phytophagous pest that causes severe damage to Solanaceous plants worldwide, resulting in significant economic losses. In this study, the maximum entropy model was used to predict the potential current (1970-2000) and future (2021-2060) global distribution of the species based on its past occurrence records and high-resolution environmental data. The results showed that the mean values of the area under the curve were all >0.96, indicating that the model performed well. The three bioclimatic variables with the highest contributions were the coldest quarterly mean temperature (bio11), coldest monthly minimum temperature (bio6), and annual precipitation (bio12). A wide range of suitable areas was found across continents except Antarctica, both currently and in the future, with a much larger distribution area in South America, Africa, and Oceania (Australia), dominated by moderately and low suitable areas. A comparison of current and future suitable areas reveals a general trend of north expansion and increasing expansion over time. This study provides information for the prevention and management of this pest mite in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jee/toae140 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!