Significance: Our retinal image-based deep learning (DL) cardiac biological age (BioAge) model could facilitate fast, accurate, noninvasive screening for cardiovascular disease (CVD) in novel community settings and thus improve outcome with those with limited access to health care services.

Purpose: This study aimed to determine whether the results issued by our DL cardiac BioAge model are consistent with the known trends of CVD risk and the biomarker leukocyte telomere length (LTL), in a cohort of individuals from the UK Biobank.

Methods: A cross-sectional cohort study was conducted using those individuals in the UK Biobank who had LTL data. These individuals were divided by sex, ranked by LTL, and then grouped into deciles. The retinal images were then presented to the DL model, and individual's cardiac BioAge was determined. Individuals within each LTL decile were then ranked by cardiac BioAge, and the mean of the CVD risk biomarkers in the top and bottom quartiles was compared. The relationship between an individual's cardiac BioAge, the CVD biomarkers, and LTL was determined using traditional correlation statistics.

Results: The DL cardiac BioAge model was able to accurately stratify individuals by the traditional CVD risk biomarkers, and for both males and females, those issued with a cardiac BioAge in the top quartile of their chronological peer group had a significantly higher mean systolic blood pressure, hemoglobin A 1c , and 10-year Pooled Cohort Equation CVD risk scores compared with those individuals in the bottom quartile (p<0.001). Cardiac BioAge was associated with LTL shortening for both males and females (males: -0.22, r2 = 0.04; females: -0.18, r2 = 0.03).

Conclusions: In this cross-sectional cohort study, increasing CVD risk whether assessed by traditional biomarkers, CVD risk scoring, or our DL cardiac BioAge, CVD risk model, was inversely related to LTL. At a population level, our data support the growing body of evidence that suggests LTL shortening is a surrogate marker for increasing CVD risk and that this risk can be captured by our novel DL cardiac BioAge model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462873PMC
http://dx.doi.org/10.1097/OPX.0000000000002158DOI Listing

Publication Analysis

Top Keywords

cardiac bioage
28
cvd risk
16
bioage model
12
retinal image-based
8
image-based deep
8
deep learning
8
cardiac
8
learning cardiac
8
bioage
8
telomere length
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!