Estimating the interfacial permeability for flow into a poroelastic medium.

Soft Matter

Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.

Published: September 2024

Boundary conditions between a porous solid and a fluid has been a long-standing problem in modeling porous media. For deformable poroelastic materials such as hydrogels, the question is further complicated by the elastic stress from the solid network. Recently, an interfacial permeability condition has been developed from the principle of positive energy dissipation on the hydrogel-fluid interface. Although this boundary condition has been used in flow computations and yielded reasonable predictions, it contains an interfacial permeability as a phenomenological parameter. In this work, we use pore-scale models of flow into a periodic array of solid cylinders or parallel holes to determine as a function of the pore size and porosity. This provides a means to evaluate the interfacial permeability for a wide range of poroelastic materials, including hydrogels, foams and biological tissues, to enable realistic flow simulations.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4sm00476kDOI Listing

Publication Analysis

Top Keywords

interfacial permeability
16
poroelastic materials
8
estimating interfacial
4
permeability
4
flow
4
permeability flow
4
flow poroelastic
4
poroelastic medium
4
medium boundary
4
boundary conditions
4

Similar Publications

Influence of wettability on water retention curves in unconsolidated porous media.

J Contam Hydrol

January 2025

Center of Innovation for Flow through Porous Media (COIFPM), Department of Energy and Petroleum Engineering, University of Wyoming, Laramie, WY, USA.

Controlled laboratory experiments were carried out using the hanging column method. Prior to the experiments, three uniform silica sands, which were originally water-wet, were aged in contact with crude oil until they were moderately oil-wet. Five fractionally wet sands were obtained by mixing the water-wet sands with oil-wet sands containing 25, 50 and 75 vol% oil-wet sands.

View Article and Find Full Text PDF

Ammonia electrosynthesis through the lithium-mediated approach has recently reached promising results towards high activity and selectivity in aprotic media, reaching high Faradaic efficiency (FE) values and NH3 production rates. To fasten the comprehension and optimization of the complex lithium-mediated nitrogen reduction system, for the first time a multivariate approach is proposed as a powerful tool to reduce the number of experiments in comparison with the classical one-factor-at-a-time approach. Doehlert design and surface response methodology are employed to optimize the electrolyte composition for a batch autoclaved cell.

View Article and Find Full Text PDF

Recent innovations in strategies to prepare metal-organic framework-based mixed matrix membranes.

Chem Commun (Camb)

January 2025

Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.

Mixed matrix membranes (MMMs) composed of metal-organic frameworks (MOFs) and polymer matrixes have garnered significant attention due to their potential to overcome the permeability-selectivity trade-off inherent in polymeric membranes. Nevertheless, the application and industrial production of MOF-based MMMs have been hindered by issues such as poor interfacial compatibility and cumbersome fabrication processes. Recently, strategies have emerged as promising approaches for fabricating MOF-based MMMs, offering enhanced interfacial compatibility between MOF fillers and polymers, as well as a simplified construction process.

View Article and Find Full Text PDF

Achieving ultrahigh permeance and superoleophobicity is crucial for membrane application. Here, we demonstrated that a poly(ionic liquid)/PES hydrogel membrane can achieve dual goals. The high polarity of the ionic liquids induces the water molecules on the membrane surface to be arranged more ordered, as verified by molecular dynamics (MD) simulation and advanced femtosecond sum frequency generation (SFG) vibrational spectroscopy.

View Article and Find Full Text PDF

Interfacial Constructing Poly(ionic liquids) on Nanoporous Block Copolymers for Antifouling Ultrafiltration.

Langmuir

January 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, People's Republic of China.

The remarkable flexibility in structural tunability and designability of poly(ionic liquids) (PILs) has garnered significant attention. Integration of PILs with membranes, novel properties, and functionalities is anticipated for applications in the fields of membrane separation. Here, we develop a facile method to prepare PIL-functionalized membranes in a one-step process by combining selective swelling-induced pore generation and ionic liquid functionalization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!