Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Achieving precise estimates of battery cycle life is a formidable challenge due to the nonlinear nature of battery degradation. This study explores an approach using machine learning (ML) methods to predict the cycle life of lithium-metal-based rechargeable batteries with high mass loading LiNiMnCoO electrode, which exhibits more complicated and electrochemical profile during battery operating conditions than typically studied LiFePO₄/graphite based rechargeable batteries. Extracting diverse features from discharge, charge, and relaxation processes, the intricacies of cell behavior without relying on specific degradation mechanisms are navigated. The best-performing ML model, after feature selection, achieves an R of 0.89, showcasing the application of ML in accurately forecasting cycle life. Feature importance analysis unveils the logarithm of the minimum value of discharge capacity difference between 100 and 10 cycle (Log(|min(ΔDQ(V))|)) as the most important feature. Despite the inherent challenges, this model demonstrates a remarkable 6.6% test error on unseen data, underscoring its robustness and potential for transformative advancements in battery management systems. This study contributes to the successful application of ML in the realm of cycle life prediction for lithium-metal-based rechargeable batteries with practically high energy density design.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633329 | PMC |
http://dx.doi.org/10.1002/advs.202402608 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!