Edible bird's nest regulates glucose and lipid metabolic disorders the gut-liver axis in obese mice.

Food Funct

State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, School of Public Health, Xiamen University, China.

Published: July 2024

AI Article Synopsis

  • * In a study with obese mice on a high-fat diet, those receiving high doses of EBN showed significant reductions in body weight, fat content, and inflammatory markers after treatment.
  • * EBN's effects were linked to changes in gut microbiota, increased levels of beneficial compounds like GLP-1, and improvements in various metabolic pathways, suggesting it may enhance gut health and help manage obesity-related issues.

Article Abstract

Edible bird's nest (EBN) is a traditional food known for its nourishing and functional properties and is found to be involved in anti-oxidation, anti-aging, and anti-influenza mechanisms, immune regulation, and improving cardiovascular diseases, among others. However, the potential of EBN to improve glycolipid metabolism disorders in high-fat-diet induced obesity and the underlying mechanisms remain unexplored. We examined the effects of EBN on glycolipid metabolism in obese mice fed a high-fat diet. Male C57BL/6J mice were fed a high-fat diet for 8 weeks to establish an obesity model. The obese mice were selected and divided into six groups: two model control groups (normal and high-fat diets) and four intervention groups [Neu5Ac and low-, medium-, and high-dose EBN], with 12 mice in each group. After 10 weeks of continuous gavage intervention, only mice in the high-dose EBN intervention group had lower body weight and total fat content, especially visceral fat. Meanwhile, intervention with three doses of EBN reduced serum FBG, TC, LDL, Ox-LDL, IL-1β, IL-6, and TNF-α levels and increased serum HDL levels and energy expenditure. Using the high dosage as a paradigm, EBN intervention increased the sialic acid content in LDL, decreased TMAO in the liver, and increased GLP-1 levels in sera. EBN increased the colonic abundances of , , and and reduced those of and . The changes in the microbial community contribute to increasing colonic bile acids, reducing lipopolysaccharide synthesis to protect the intestinal barrier, and lowering inflammation levels. Changes were also observed in colonic transcripts and metabolites and liver gene transcripts and metabolites, which were mainly enriched in pathways of glycolipid metabolism, immune function amelioration, inflammatory signal mitigation, circadian rhythm, bile acid metabolism and insulin resistance. Therefore, EBN may enhance the gut microbiota and intestinal immunity, relieve chronic inflammation levels in serum, improve antioxidant capacity and circadian rhythm in the liver, promote bile acid metabolism, and decrease lipid absorption and lipid synthesis the gut-liver axis. Consequently, this may reduce blood lipid and fat accumulation as well as improve islet function and reduce blood glucose levels.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4fo00563eDOI Listing

Publication Analysis

Top Keywords

obese mice
12
glycolipid metabolism
12
edible bird's
8
bird's nest
8
gut-liver axis
8
ebn
8
mice fed
8
fed high-fat
8
high-fat diet
8
ebn intervention
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!