With the growing demand for postsilicon electronics, the purification of single-walled carbon nanotubes (SWCNTs) in terms of their chirality, which defines their atomic and electronic structure, is becoming increasingly important. Herein, we demonstrate the selective extraction of high-quality semiconducting SWCNTs using alkyl cellulose as a dispersant in organic solvents. We investigated the separation factors of dispersant structures, such as the degree of substitution (DS) and molecular weight, and clarified the appropriate dispersant structures, such as moderately substituted hexyl cellulose, for selective semiconducting SWCNT extraction. Due to the improved purity and quality of the semiconducting SWCNTs obtained by this method, their films exhibit excellent thermoelectric power factors, outperforming not only unsorted SWCNTs but also conducting polymer-sorted SWCNTs. This sorting technology paves the way for supplying high-quality semiconducting SWCNTs in a viable manner.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.4c05468DOI Listing

Publication Analysis

Top Keywords

semiconducting swcnts
12
high-quality semiconducting
8
dispersant structures
8
swcnts
6
semiconducting
5
semiconducting carbon
4
carbon nanotube
4
nanotube extraction
4
extraction enabled
4
enabled alkylated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!