Needs arising at both current and future accelerator facilities call for the development of radiation-hardened position-sensing diagnostics that can operate with multi-GHz repetition rates. Such instruments are likely to also have applications in the diagnosis of rapid plasma behavior. Building on the recent work of our Advanced Accelerator Diagnostics Collaboration, we are exploring the development of integrated multi-GHz ionizing particle detection systems based on chemical-vapor deposition diamond sensors, with the initial goal of producing a quadrant detector that can determine the intensity and centroid position of a particle beam at a repetition rate between 5 and 10 GHz. Results from our initial high-speed characterization work are presented, including those from a single-channel sensor with a GHz response. Approaches to achieving multi-GHz (5-10 GHz) rate capability, including the design of a dedicated Application Specific Integrated Circuit and the use of 3D RF-solver computer aided design software, are presented and discussed in more detail. 3D RF simulations suggest clean pulses of duration less than 250 ps (FWHM less than 125 ps) can be achieved with the approaches developed by this work.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0213921 | DOI Listing |
Mutat Res Rev Mutat Res
January 2025
Radiation Epidemiology Branch, National Cancer Institute, MD 20892-9778, USA; Faculty of Health, Science and Technology, Oxford Brookes University, Headington Campus, OX3 0BP, UK.
Biological effects of ionizing radiation vary with radiation quality, which is often expressed as the amount of energy deposited per unit length, i.e., linear energy transfer (LET).
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Kansai Institute for Photon Science, National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa-shi, Kyoto 619-0215, Japan.
Ionizing radiation induces various types of DNA damage, and the reparability and lethal effects of DNA damage differ depending on its spatial density. Elucidating the structure of radiation-induced clustered DNA damage and its repair processes will enhance our understanding of the lethal impact of ionizing radiation and advance progress toward precise therapeutics. Previously, we developed a method to directly visualize DNA damage using atomic force microscopy (AFM) and classified clustered DNA damage into simple base damage clusters (BDCs), complex BDCs and complex double-strand breaks (DSBs).
View Article and Find Full Text PDFBiology (Basel)
December 2024
Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile.
Breast cancer is a global health issue that, when in the metastasis stage, is characterized by the lack of estrogen receptor-α, the progesterone receptor, and human epidermal growth receptor expressions. The present study analyzed the differential gene expression related to the immune system affected by ionizing radiation and estrogen in cell lines derived from an experimental breast cancer model that was previously developed; where the immortalized human breast epithelial cell line MCF-10F, a triple-negative breast cancer cell line, was exposed to low doses of high linear energy transfer α particle radiation (150 keV/μm), it subsequently grew in the presence or absence of 17β-estradiol. Results indicated that interferon-related developmental regulator 1 gene expression was affected in the estrogen-treated cell line; this interferon, as well as the Interferon-Induced Transmembrane protein 2, and the TNF alpha-induced Protein 6 gene expression levels were higher than the control in the Alpha3 cell line.
View Article and Find Full Text PDFPhys Med Biol
January 2025
Faculty of Mathematics and Natural Sciences , Hochschule Darmstadt, Schöfferstr., 3, Darmstadt, Hessen, 64295, GERMANY.
Chem Sci
December 2024
Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
Oxidation is a fundamental transformation in synthesis. Developing facile and effective aerobic oxidation processes under ambient conditions is always in high demand. Benefiting from its high energy and good penetrability, ionizing radiation can readily produce various reactive species to trigger chemical reactions, offering another option for synthesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!