Integration of metabolites into the overall metabolic network of a cell requires careful coordination dependent upon the ultimate usage of the metabolite. Different stoichiometric needs, and thus pathway fluxes, must exist for compounds destined for diverse uses, such as carbon sources, nitrogen sources, or stress-protective agents. Herein, we expand upon our previous work that highlighted the nature of glycine betaine (GB) metabolism in Methylobacteria to examine the utilization of GB-derivative compounds dimethylglycine (DMG) and sarcosine into in different metabolic capacities, including as sole nitrogen and/or carbon sources. We isolated gain-of-function mutations that allowed PA1 to utilize dimethylglycine as a carbon source and dimethylglycine and sarcosine as nitrogen source. Characterization of mutants demonstrated selection for variants of the AraC-like regulator Mext_3735 that confer constitutive expression of the GB metabolic gene cluster, allowing direct utilization of the downstream GB derivatives. Finally, among the distinct isolates examined, we found that catabolism of the osmoprotectant used for selection (GB or dimethylglycine) enhanced osmotic stress resistance provided in the presence of that particular osmolyte. Thus, access to the carbon and nitrogen and osmoprotective effects of GB and DMG are made readily accessible through adaptive mutations. In PA1, the limitations to exploiting this group of compounds appear to exist predominantly at the levels of gene regulation and functional activity, rather than being constrained by transport or toxicity.IMPORTANCEOsmotic stress is a common challenge for bacteria colonizing the phyllosphere, where glycine betaine (GB) can be found as a prevalent osmoprotectant. Though PA1 cannot use GB or its demethylation products, dimethylglycine (DMG) and sarcosine, as a sole carbon source, utilization is highly selectable via single nucleotide changes for both GB and DMG growth. The innate inability to use these compounds is due to limited flux through steps in the pathway and regulatory constraints. Herein, the characterization of the transcriptional regulator, Mext_3735 (GbdR), expands our understanding of the various roles in which GB derivatives can be used in PA1. Interestingly, increased catabolism of GB and derivatives does not interfere with, but rather improves, the ability of cells to thrive under increased salt stress conditions, suggesting that metabolic flux improves stress tolerance rather than providing a distinct tension between uses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11323934PMC
http://dx.doi.org/10.1128/aem.00310-24DOI Listing

Publication Analysis

Top Keywords

glycine betaine
12
osmotic stress
8
carbon sources
8
dimethylglycine dmg
8
dmg sarcosine
8
carbon source
8
regulator mext_3735
8
stress
5
pa1
5
carbon
5

Similar Publications

The gut-liver axis and its interactions are essential for host physiology. Thus, we examined the jejunal microbiota, fermentation parameters, digestive enzymes, morphology, and liver metabolic profiles in different growth development lambs to investigate the liver-gut axis's role in their development. One hundred male Hu lambs of similar birth weight and age were raised under the same conditions until they reached 180 days of age.

View Article and Find Full Text PDF

The quest for cleaner and sustainable energy sources is crucial, considering the current scenario of a steep rise in energy consumption and the fuel crisis, exacerbated by diminishing fossil fuel reserves and rising pollutants. In particular, the bioaccumulation of hazardous substances like trivalent chromium has not only disrupted the fragile equilibrium of the ecological system but also poses significant health hazards to humans. Microalgae emerged as a promising solution for achieving sustainability due to their ability to remediate contaminants and produce greener alternatives such as biofuels.

View Article and Find Full Text PDF

Arsenic is a common toxic heavy metal contaminant that is widely present in the ocean, and seaweeds have a strong ability to concentrate arsenic, posing a potential risk to human health. This study first analyzed the arsenic content in two different seaweeds and then used an innovative method to categorize the seaweeds into low-arsenic and high-arsenic groups based on their arsenic exposure levels. Finally, a non-targeted metabolomic analysis based on mass spectrometry was conducted on seaweed from different arsenic exposure groups.

View Article and Find Full Text PDF

Taurine and betaine are important nutrients in and have many important biological properties. To investigate the characteristics of taurine and betaine contents and identify SNPs associated with traits in the , we cloned the full-length cDNA of key genes in taurine and betaine (unpublished data) metabolism, determined taurine and betaine content and gene expression in different tissues and months of specimen collection, and developed SNPs in the gene coding region. We cloned the full-length cDNA of cysteine dioxygenase ( ) and cysteine sulfite decarboxylase ( ), which are key genes involved in taurine metabolism in , and found that betaine and taurine contents and the expression of key genes were regulated by seawater salinity.

View Article and Find Full Text PDF

Enhancing cadmium stress resilience in chickpea ( L.) via exogenous melatonin application.

Int J Phytoremediation

January 2025

Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia.

Article Synopsis
  • Chickpea productivity is negatively impacted by heavy metal toxicity, specifically cadmium (Cd), with a study conducted to analyze various treatments involving methylthio (MT) to alleviate stress effects.
  • Significant reductions in growth metrics like shoot fresh and dry weight, total chlorophyll, and calcium were observed under Cd stress, while increases in stress-related compounds such as proline, phenolics, and antioxidants were noted.
  • The application of 30 µM MT showed promising results, enhancing various growth parameters and antioxidant activities, thus demonstrating its potential in mitigating Cd toxicity, with the desi variety of chickpeas showing better resilience than the Kabuli variety.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!