Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Paclitaxel and imatinib mesylate are drugs used in the treatment of breast cancer. Conventional drug-delivery systems have limitations in the effective treatment of breast cancer using the drugs. Combination index studies were used to identify the optimum ratio of both drugs showing maximum synergistic effect. Using a systematic quality-by-design approach, protamine-coated PLGA nanoparticles co-loaded with paclitaxel and imatinib mesylate were formulated. Further characterization and cell line evaluations were performed. Encapsulation efficiency obtained was 92.54% for paclitaxel and 75.12% for imatinib mesylate. A sustained (24 h) and controlled zero-order drug release was obtained. Formulated nanoparticles had a low IC value and enhanced cellular uptake.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11486237 | PMC |
http://dx.doi.org/10.1080/17435889.2024.2353557 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!