AI Article Synopsis

  • The study investigates the role of C5aR2, a receptor related to inflammation, in hypertension and its effects on kidney injury, revealing that C5aR2 deficiency does not impact hypertensive damage caused by angiotensin II in mice.
  • C5aR2 expression is primarily found in immune cells like dendritic cells and monocytes, both in mice and hypertensive human patients, suggesting a potential link between immune response and hypertension.
  • Despite the high expression of C5aR2 in these immune cells, results indicate that its absence does not lead to differences in blood pressure or renal and cardiac injuries in models of hypertension induced by angiotensin II.

Article Abstract

Backround: Complement activation may facilitate hypertension through its effects on immune responses. The anaphylatoxin C5a, a major inflammatory effector, binds to the C5a receptors 1 and 2 (C5aR1, C5aR2). We have recently shown that C5aR1-/- mice have reduced hypertensive renal injury. The role of C5aR2 in hypertension is unknown.

Methods: For examination of C5aR2 expression on infiltrating and resident renal cells a tandem dye Tomato-C5aR2 knock-in reporter mouse was used. Human C5aR2 expression was analyzed in a single-cell RNAseq data set from the kidneys of hypertensive patients. Finally, we examined the effect of angiotensin II-induced hypertension in C5aR2-deficient mice.

Results: Flow cytometric analysis of leukocytes isolated from kidneys of the reporter mice showed that dendritic cells are the major C5aR2-expressing population (34%) followed by monocyte/macrophages (30%) and neutrophils (14%). Using confocal microscopy C5aR2 was not detected in resident renal or cardiac cells. In the human kidney, C5aR2 was also mainly found in monocytes, macrophages, and dendritic cells with a significantly higher expression in hypertension (P < 0.05). Unilateral nephrectomy was performed followed by infusion of Ang II (0.75 ng/g/min) and a high salt diet in wildtype (n = 18) and C5aR2-deficient mice (n = 14). Blood pressure, renal injury (albuminuria, glomerular filtration rate, glomerular and tubulointerstitial injury, inflammation), and cardiac injury (cardiac fibrosis, heart weight, gene expression) did not differ between hypertensive wildtype and C5aR2-/- mice.

Conclusions: In summary, C5aR2 is mainly expressed in myeloid cells in the kidney in mice and humans but its deficiency has no effect on Ang II-induced hypertensive injury.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ajh/hpae082DOI Listing

Publication Analysis

Top Keywords

angiotensin ii-induced
8
ii-induced hypertension
8
c5ar2 expression
8
resident renal
8
dendritic cells
8
c5ar2
7
hypertension
5
role anaphylatoxin
4
anaphylatoxin receptor
4
receptor c5ar2
4

Similar Publications

Increased level of angiotensin II (Ang II) plays a central role in the development of hypertensive vascular remodeling. In this study, we identified the deubiquitinating enzyme Josephin domain-containing protein 2 (JOSD2) as a protective factor and investigated its molecular mechanism in Ang II-induced vascular remodeling. First, we found that JOSD2 was upregulated in aortic smooth muscle cells, but not in endothelial cells of Ang II-challenged mouse vascular tissues.

View Article and Find Full Text PDF

NO-sensitive guanylyl cyclase (NO-GC) is involved in the (patho)physiology of the mammalian heart. However, little is known about the individual cardiac cell types that express NO-GC and the role of the enzyme in cardiac fibrosis. Here, we describe the cellular expression of NO-GC in healthy and fibrotic murine myocardium; these data were compared with scRNA-seq data.

View Article and Find Full Text PDF

Atherosclerosis (ATH) represents a major cause of cardiovascular disease. Long noncoding RNA (LncRNA) myocardin-induced smooth muscle lncRNA, inducer of differentiation (MYOSLID) and microRNA (miR) -29c-3p show substantial roles in ATH. We investigated their regulatory mechanisms on vascular smooth muscle cell (VSMC) proliferation and migration.

View Article and Find Full Text PDF

20-HETE mediates Ang II-induced cardiac hypertrophy via ROS and Ca signaling in H9c2 cells.

Sci Rep

January 2025

Department of Physiology, Zunyi Medical University, Campus No.1 Road, Xinpu New District, Zunyi, 563006, Guizhou, China.

In the vascular system, angiotensin II (Ang II) mediated vasoconstriction by inducing the production of 20-hydroxyeicosatetraenoic acid (20-HETE). However, the role of 20-HETE in Ang II-induced cardiac dysfunction had yet to be fully elucidated. This study investigated the effects of Ang II on CYP4A expression and 20-HETE production in H9c2 cells using RT-qPCR, Western blot, and ELISA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!