Artificial intelligence and nonoperating room anesthesia.

Curr Opin Anaesthesiol

Sorbonne University, GRC 29, AP-HP, DMU DREAM, Department of Anesthesiology and Critical Care, Saint-Antoine Hospital, Paris, France.

Published: August 2024

Purpose Of Review: The integration of artificial intelligence (AI) in nonoperating room anesthesia (NORA) represents a timely and significant advancement. As the demand for NORA services expands, the application of AI is poised to improve patient selection, perioperative care, and anesthesia delivery. This review examines AI's growing impact on NORA and how it can optimize our clinical practice in the near future.

Recent Findings: AI has already improved various aspects of anesthesia, including preoperative assessment, intraoperative management, and postoperative care. Studies highlight AI's role in patient risk stratification, real-time decision support, and predictive modeling for patient outcomes. Notably, AI applications can be used to target patients at risk of complications, alert clinicians to the upcoming occurrence of an intraoperative adverse event such as hypotension or hypoxemia, or predict their tolerance of anesthesia after the procedure. Despite these advances, challenges persist, including ethical considerations, algorithmic bias, data security, and the need for transparent decision-making processes within AI systems.

Summary: The findings underscore the substantial benefits of AI in NORA, which include improved safety, efficiency, and personalized care. AI's predictive capabilities in assessing hypoxemia risk and other perioperative events, have demonstrated potential to exceed human prognostic accuracy. The implications of these findings advocate for a careful yet progressive adoption of AI in clinical practice, encouraging the development of robust ethical guidelines, continual professional training, and comprehensive data management strategies. Furthermore, AI's role in anesthesia underscores the need for multidisciplinary research to address the limitations and fully leverage AI's capabilities for patient-centered anesthesia care.

Download full-text PDF

Source
http://dx.doi.org/10.1097/ACO.0000000000001388DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
intelligence nonoperating
8
nonoperating room
8
room anesthesia
8
clinical practice
8
ai's role
8
anesthesia
7
ai's
5
anesthesia purpose
4
purpose review
4

Similar Publications

This study intents to detect graphical network features associated with seizure relapse following antiseizure medication (ASM) withdrawal. Twenty-four patients remaining seizure-free (SF-group) and 22 experiencing seizure relapse (SR-group) following ASM withdrawal as well as 46 matched healthy participants (Control) were included. Individualized morphological similarity network was constructed using T1-weighted images, and graphic metrics were compared between groups.

View Article and Find Full Text PDF

IL-33, a neutrophil extracellular trap-related gene involved in the progression of diabetic kidney disease.

Inflamm Res

January 2025

Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, China.

Background: Chronic inflammation is well recognized as a key factor related to renal function deterioration in patients with diabetic kidney disease (DKD). Neutrophil extracellular traps (NETs) play an important role in amplifying inflammation. With respect to NET-related genes, the aim of this study was to explore the mechanism of DKD progression and therefore identify potential intervention targets.

View Article and Find Full Text PDF

Leveraging Large Language Models to Enhance Dermatology Clinical Trial Patient Recruitment and Retention.

J Invest Dermatol

January 2025

Department of Dermatology, Stanford University, Stanford, California, USA; Department of Biomedical Data Science, Stanford University, Stanford, California, USA. Electronic address:

View Article and Find Full Text PDF

Cardiac amyloidosis represents a unique disease process characterized by amyloid fibril deposition within the myocardial extracellular space. Advances in multimodality cardiac imaging enable accurate diagnosis and facilitate prompt initiation of disease-modifying therapies. Furthermore, rapid advances in multimodality imaging have enriched understanding of the underlying pathogenesis, enhanced prognostication, and resulted in the development of imaging-based markers that reflect the amyloid burden, which is of increasing importance when assessing the response to treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!