A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep Deblurring in Teledermatology: Deep Learning Models Restore the Accuracy of Blurry Images' Classification. | LitMetric

Blurry images in teledermatology and consultation increased the diagnostic difficulty for both deep learning models and physicians. We aim to determine the extent of restoration in diagnostic accuracy after blurry images are deblurred by deep learning models. We used 19,191 skin images from a public skin image dataset that includes 23 skin disease categories, 54 skin images from a public dataset of blurry skin images, and 53 blurry dermatology consultation photos in a medical center to compare the diagnosis accuracy of trained diagnostic deep learning models and subjective sharpness between blurry and deblurred images. We evaluated five different deblurring models, including models for motion blur, Gaussian blur, Bokeh blur, mixed slight blur, and mixed strong blur. Diagnostic accuracy was measured as sensitivity and precision of correct model prediction of the skin disease category. Sharpness rating was performed by board-certified dermatologists on a 4-point scale, with 4 being the highest image clarity. The sensitivity of diagnostic models dropped 0.15 and 0.22 on slightly and strongly blurred images, respectively, and deblurring models restored 0.14 and 0.17 for each group. The sharpness ratings perceived by dermatologists improved from 1.87 to 2.51 after deblurring. Activation maps showed the focus of diagnostic models was compromised by the blurriness but was restored after deblurring. Deep learning models can restore the diagnostic accuracy of diagnostic models for blurry images and increase image sharpness perceived by dermatologists. The model can be incorporated into teledermatology to help the diagnosis of blurry images.

Download full-text PDF

Source
http://dx.doi.org/10.1089/tmj.2023.0703DOI Listing

Publication Analysis

Top Keywords

deep learning
20
learning models
20
blurry images
16
diagnostic accuracy
12
skin images
12
diagnostic models
12
models
11
images
9
models restore
8
blurry
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!