A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A machine learning-based approach for predicting renal function recovery in general ward patients with acute kidney injury. | LitMetric

Background: Acute kidney injury (AKI) is a significant challenge in healthcare. While there are considerable researches dedicated to AKI patients, a crucial factor in their renal function recovery, is often overlooked. Thus, our study aims to address this issue through the development of a machine learning model to predict restoration of kidney function in patients with AKI.

Methods: Our study encompassed data from 350,345 cases, derived from three hospitals. AKI was classified in accordance with the Kidney Disease: Improving Global Outcomes. Criteria for recovery were established as either a 33% decrease in serum creatinine levels at AKI onset, which was initially employed for the diagnosis of AKI. We employed various machine learning models, selecting 43 pertinent features for analysis.

Results: Our analysis contained 7,041 and 2,929 patients' data from internal cohort and external cohort respectively. The Categorical Boosting Model demonstrated significant predictive accuracy, as evidenced by an internal area under the receiver operating characteristic (AUROC) of 0.7860, and an external AUROC score of 0.7316, thereby confirming its robustness in predictive performance. SHapley Additive exPlanations (SHAP) values were employed to explain key factors impacting recovery of renal function in AKI patients.

Conclusion: This study presented a machine learning approach for predicting renal function recovery in patients with AKI. The model performance was assessed across distinct hospital settings, which revealed its efficacy. Although the model exhibited favorable outcomes, the necessity for further enhancements and the incorporation of more diverse datasets is imperative for its application in real- world.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11237326PMC
http://dx.doi.org/10.23876/j.krcp.23.330DOI Listing

Publication Analysis

Top Keywords

renal function
16
function recovery
12
machine learning
12
approach predicting
8
predicting renal
8
acute kidney
8
kidney injury
8
aki
7
function
5
recovery
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!