Lithium metal batteries (LMBs) are well recognized as promising next-generation high energy density batteries, but the uncontrollable Li dendrites growth and the volatilization/gas production of electrolytes, which become extremely worse at low and high temperatures, restrict their practical utilizations. In this work, a hierarchically structured polymerized gel electrolyte (HGE), which was composed of an inorganic (LiGaIn alloy and LiCl salt)/organic (polymerized tetrahydrofuran (THF)) hybrid layer and the bulk polymerized THF electrolyte, was proposed to achieve a steady performance of LMBs over a wide temperature range of -20-55 °C. The HGE fabrication can be completed within assembled cells with a simultaneously occurring replacement-polymerization-alloying reaction, which helps decrease the interfacial resistance and enhance the stability and ion diffusion under both low and high temperatures. The use of THF with low polarity also ensures high ion conductivity under low temperatures. With such HGE, the Li symmetric cells showed low overpotential under 10 mA/cm with a capacity of 10 mAh/cm over a 1200 h cycling, and the full cell coupled with LiTiO demonstrated high capacity retention over 5000 cycles at room temperature. Besides, the symmetric cells showed low overpotentials of 12 mV at 55 °C and 80 mV at -20 °C at 2 mA/cm after a 1000 h cycling, and the full cell revealed the high capacity retention of 93.5% at 55 °C and 88.8% at -20 °C after 1500 cycles under a high current density of 1000 mA/g. This work shows a hierarchically structured polymerized electrolyte design for advanced Li batteries workable under broad temperatures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11197593 | PMC |
http://dx.doi.org/10.1016/j.fmre.2021.10.003 | DOI Listing |
Adv Sci (Weinh)
January 2025
Institute for Superconducting & Electronic Materials (ISEM), Faculty of Engineering and Information Sciences (EIS), University of Wollongong, Wollongong, NSW, 2500, Australia.
Rechargeable batteries are central to modern energy storage systems, from portable electronics to electric vehicles. The cathode material, a critical component, largely dictates a battery's energy density, capacity, and overall performance. This review focuses on the application of operando X-ray absorption spectroscopy (XAS) to study cathode materials in Li-ion, Na-ion, Li-S, and Na-S batteries.
View Article and Find Full Text PDFSmall
January 2025
Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
Aqueous zinc-based batteries (AZBs) are gaining widespread attention owing to their intrinsic safety, relatively low electrode potential, and high theoretical capacity. Transition metal dichalcogenides (TMDs) have convenient 2D ion diffusion channels, so they have been identified as promising host materials for AZBs, but face several key challenges such as the narrow interlayer spacing and the lack of in-deep understanding energy storage mechanisms. This review presents a comprehensive summary and discussion of the intrinsic structure, charge storage mechanisms, and key fabrication strategies of TMD-based cathodes for AZBs.
View Article and Find Full Text PDFNano Lett
January 2025
The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.
Robust interfaces in anodes play a crucial role in boosting sodium-ion battery (SIB) performance. However, the fragile interfaces constructed by a two-step synthesis or artificial stack are prone to be destroyed during the charging/discharging processes, which significantly reduces the lifetime of SIBs. Here, a facile construction strategy is developed to produce robust interfaces in hollow sphere-like CoSe/nitrogen-doped carbon (HS-CoSe/NC) using intrinsic Co, N, C in metal-organic framework as precursors, which enhance the electron/ion diffusion kinetics.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
Lithium dendrites are widely acknowledged as the main culprit of the degradation of performance in various Li-based batteries. Studying the mechanism of lithium dendrite formation is challenging because of the high reactivity of lithium metal. In this work, a phase field model and in situ observation experiments were used to study the growth kinetics and morphologies of lithium dendrites in terms of anisotropy, temperature, and potential difference.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar 388120, Gujarat, India.
The development of devices capable of storing energy harnessed from photons is on the rise, owing to the increasing global energy demand for smart systems. The majority of reports in this field cover the use of integrated type devices, which houses a separate photovoltaic module and supercapacitor or battery. Herein, we are reporting a photocapacitor with a simple two-electrode design, capable of operating without a conventional electrolyte or metal ions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!