AI Article Synopsis

Article Abstract

Grapes are globally popular with wine production being one of the most well-known uses of grapes worldwide. Brazil has a growing wine industry, and the Serra Gaúcha region is a significant contributor to the country's wine production. Nonetheless, other states are increasing their relevance in this segment. Environmental factors and the soil microbiome (bacteria and fungi) heavily influence grape quality, shaping the crucial "" for wines. Here, soil quality was assessed through nutrient analysis and bacteria microbial diversity, which could significantly impact grape health and final wine attributes. Soil samples from São Paulo's vineyards, focusing on Syrah, Malbec, and Cabernet Sauvignon, underwent chemical and microbial analysis via 16S rRNA metabarcoding and highlighted significant differences in soil composition between vineyards. Statistical analyses including PCA and CAP showcased region-based separation and intricate associations between microbiota, region, and grape variety. Correlation analysis pinpointed microbial genera linked to specific soil nutrients. Random Forest analysis identified abundant bacterial genera per grape variety and the Network analysis revealed varied co-occurrence patterns, with Cabernet Sauvignon exhibiting complex microbial interactions. This study unveils complex relationships between soil microbiota, nutrients, and diverse grape varieties in distinct vineyard regions. Understanding how these specific microorganisms are associated with grapes can improve vineyard management, grape quality, and wine production. It can also potentially optimize soil health, bolster grapevine resilience against pests and diseases, and contribute to the unique character of wines known as .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11200342PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e32283DOI Listing

Publication Analysis

Top Keywords

wine production
16
grape quality
8
cabernet sauvignon
8
grape variety
8
soil
7
wine
6
grape
6
analysis
5
metabarcoding analysis
4
analysis reveals
4

Similar Publications

Application of a dynamic colonic gastrointestinal digestion model to red wines: a study of flavanol metabolism by the gut microbiota and the cardioprotective activity of microbial metabolites.

Food Funct

January 2025

Instituto de Ciencias de la Vid y del Vino-ICVV (Consejo Superior de Investigaciones Científicas-CSIC, Universidad de La Rioja-UR, Gobierno de La Rioja), Finca La Grajera, Ctra. de Burgos Km. 6 (LO-20, - salida 13), 26007 Logroño, Spain.

Over the last decade, research has emphasized the role of the microbiome in regulating cardiovascular physiology and disease progression. Understanding the interplay between wine polyphenols, the gut microbiota, and cardiovascular health could provide valuable insights for uncovering novel therapeutic strategies aimed at preventing and managing cardiovascular disease. In this study, two commercial red wines were subjected to dynamic gastrointestinal digestion (GIS) to monitor the flavanol-microbiota interaction by evaluating the resulting microbial metabolites.

View Article and Find Full Text PDF

Hyphopichia pseudoburtonii, is emerging as a potential biocontrol agent against various phytopathogens. These traits have been attributed to the production of various antifungal compounds in the presence of target pathogens. However, the broad molecular mechanisms involved in the antifungal activity are not yet understood.

View Article and Find Full Text PDF

The fermentation process in alcoholic beverage production converts sugars into ethanol and CO, releasing significant amounts of greenhouse gases. Here, Cupriavidus necator DSM 545 was grown autotrophically using gas derived from alcoholic fermentation, using a fed-batch bottle system. Nutrient starvation was applied to induce intracellular accumulation of poly(3-hydroxybutyrate) (PHB), a bioplastic polymer, for bioconversion of CO-rich waste gas into PHB.

View Article and Find Full Text PDF

Enantioselective Degradation and Processing Factors of Seven Chiral Pesticides During the Processing of Wine and Rice Wine.

Chirality

January 2025

Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, China.

Chiral pesticides often undergo enantioselective degradation during food fermentation. In this study, the enantioselective fates of seven chiral pesticides during processing of wine and rice wine were investigated. The results revealed that R-metalaxyl, R-mefentrifluconazole and S-hexaconazole were preferentially degraded during wine processing with EF values of 0.

View Article and Find Full Text PDF

Untargeted LC-HRMS analyses reveal metabolomic specificities between wine yeast strains selected for their malic acid production.

Food Chem

December 2024

BIOLAFFORT, 11 rue Aristide Berges, 33270 Floirac, France; UMR OENO, Université de Bordeaux, INRAE, INP, BSA, ISVV, 210 Chemin de Leysotte, 33882 Villenave d'Ornon, France. Electronic address:

The alcoholic fermentation of wine is mostly achieved by the species Saccharomyces cerevisiae that display a large variability for their ability to consume or produce malic acid. To better characterize the metabolism of such group of strains we explored their non-volatile metabolome using an untargeted LC-HRMS approach. The chemical classes and the putative structures of several hundred compounds where annotated using MS2 spectra using the SIRIUS software.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!