Modeling of proton exchange membrane (PEM) fuel cells is attracting more attention as fuel cell technology continues to develop. In this study, we considered a hybrid model that combines an agglomerate model based on the agglomeration of catalyst particles and the coverage-dependent kinetic equation of platinum oxide for ORR, and another 3D numerical model of a PEM fuel cell based on computational fluid dynamics (CFD). The obtained results from our developed models were validated with experimental results from literature. In fact, we investigated the effects of changing the agglomerate radius , the ionomer volume fraction within the agglomerate the effective agglomerate surface area , the distribution of the gases and the temperature on the cell performances. The results revealed that the cell performances are strongly influenced by changing and for medium and high current densities: The activation loss increases with increasing and decreasing . Also, increases with decreasing and increasing . In addition, the PEM fuel cell's power output is significantly enhanced when is decreased and is increased, the optimal power being obtained for values of and  = 0.6. The numerical results also showed that decreasing the output voltage from 0.95V to 0.35V can accelerate the electrochemical reaction process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11200341PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e32277DOI Listing

Publication Analysis

Top Keywords

fuel cell
12
pem fuel
12
computational fluid
8
fluid dynamics
8
agglomerate model
8
proton exchange
8
exchange membrane
8
cell performances
8
agglomerate
6
model
5

Similar Publications

One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.

View Article and Find Full Text PDF

Azo dyes constitute 60-70% of commercially used dyes and are complex, carcinogenic, and mutagenic pollutants that negatively impact soil composition, water bodies, flora, and fauna. Conventional azo dye degradation techniques have drawbacks such as high production and maintenance costs, use of hazardous chemicals, membrane clogging, and sludge generation. Constructed Wetland-Microbial Fuel Cells (CW-MFCs) offer a promising sustainable approach for the bio-electrodegradation of azo dyes from textile wastewater.

View Article and Find Full Text PDF

The glycocalyx and its associated endothelial surface layer which lines all cell membranes and most tissues, dwarfs the phospholipid membrane of cells in extent. Its major components are sulphated polymers like heparan and chondroitin sulphates and hyaluronic acid. These form a fuzzy layer of unknown structure and function.

View Article and Find Full Text PDF

Enhanced Interfacial Contact and Lithium-Ion Transport in Ionic Liquid Polymer Electrolyte via In-Situ Electrolyte-Cathode Integration.

Molecules

January 2025

Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.

Solid polymer electrolytes (SPEs) have attracted much attention due to their excellent flexibility, strong interfacial adhesion, and good processibility. However, the poor interfacial contact between the separate solid polymer electrolytes and electrodes leads to large interfacial impedance and, thus, hinders Li transport. In this work, an ionic liquid-modified comb-like crosslinked network composite solid-state electrolyte with an integrated electrolyte/cathode structure is prepared by in situ ultraviolet (UV) photopolymerization.

View Article and Find Full Text PDF

The increasing global population and urbanization have led to significant challenges in waste management, particularly concerning vacuum blackwater (VBW), which is the wastewater generated from vacuum toilets. Traditional treatment methods, such as landfilling and composting, often fall short in terms of efficiency and sustainability. Anaerobic digestion (AD) has emerged as a promising alternative, offering benefits such as biogas production and digestate generation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!