The frictional behavior of one-dimensional (1D) materials, including nanotubes, nanowires, and nanofibers, significantly influences the efficient fabrication, functionality, and reliability of innovative devices integrating 1D components. Such devices comprise piezoelectric and triboelectric nanogenerators, biosensing and implantable devices, along with biomimetic adhesives based on 1D arrays. This review compiles and critically assesses recent experimental techniques for exploring the frictional behavior of 1D materials. Specifically, it underscores various measurement methods and technologies employing atomic force microscopy, electron microscopy, and optical microscopy nanomanipulation. The emphasis is on their primary applications and challenges in measuring and characterizing the frictional behavior of 1D materials. Additionally, we discuss key accomplishments over the past two decades in comprehending the frictional behaviors of 1D materials, with a focus on factors such as materials combination, interface roughness, environmental humidity, and non-uniformity. Finally, we offer a brief perspective on ongoing challenges and future directions, encompassing the systematic investigation of the testing environment and conditions, as well as the modification of surface friction through surface alterations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11197433PMC
http://dx.doi.org/10.1039/d4na00039kDOI Listing

Publication Analysis

Top Keywords

frictional behavior
16
behavior one-dimensional
8
one-dimensional materials
8
behavior materials
8
materials
6
frictional
5
materials experimental
4
experimental perspective
4
perspective frictional
4
materials including
4

Similar Publications

Suppressing Friction-Induced Stick-Slip Vibration and Noise of Zinc-Coated Steel through Temper Rolling.

Langmuir

January 2025

Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China.

The stick-slip phenomenon as a prevalent friction instability poses significant challenges to industry, including frictional vibration, reduced precision, and noise generation. The interfacial interactions between asperities on the surface of materials are critical in influencing stick-slip behavior. This study focused on modifying the asperities on the surface of zinc-coated steel through temper rolling as a new approach to suppress friction-induced stick-slip vibration and noise.

View Article and Find Full Text PDF

In recent years, there have been many studies focused on improving the performance of active materials; however, applying these materials to active machines still presents significant challenges. In this study, we introduce a light-powered self-translation system for an asymmetric friction slider using a liquid crystal elastomer (LCE) string oscillator. The self-translation system was composed of a hollow slide, two LCE fibers, and a mass ball.

View Article and Find Full Text PDF

To enhance the sliding tribological performance between PTFE and 40#steel (AISI 1040) under full film lubrication conditions, laser surface texturing (LST) technology was employed to prepare micro-dimples on the contact surfaces of 40# steel discs. The Box-Behnken design response surface methodology (BBD-RSM) was applied to optimize the micro-dimple parameters. Coefficients of friction (COFs), wear losses and worn contact surfaces of the PTFE-40# steel tribo-pairs were researched through repeated wear tests, as lubricated with sufficient anti-wear hydraulic oil.

View Article and Find Full Text PDF

Investigation of Shear Behavior in High-Strength Bolt Connectors for Steel-Concrete Composite Beams.

Materials (Basel)

December 2024

Key Laboratory of New Technology for Construction of Cities in Mountain Area, School of Civil Engineering, Chongqing University, Chongqing 400045, China.

High-strength bolt connectors, known for their robust strength and ease of disassembly, are suitable not only for the construction of new steel-concrete composite beams but also for reinforcing existing composite or steel beams. Static push-out tests were performed on nine specimens to examine their shear behavior. The primary failure mode was observed at the steel-concrete interface, characterized by the tensile-shear failure of the bolt and localized crushing of the concrete beneath the bolt.

View Article and Find Full Text PDF

The Effect of Post Heat Treatment on the Microstructure and Mechanical Properties of Cold-Sprayed Zn-6Cu Deposits.

Materials (Basel)

December 2024

Jiangxi Provincial Key Laboratory of Materials Surface Engineering, School of Materials Science and Engineering, Jiujiang University, Jiujiang 332005, China.

To explore the feasibility of preparing Zn alloy bulk, Zn-6Cu deposit was prepared by cold-spraying additive manufacturing. Microstructure, tensile and wear behavior were investigated before and after heat treatment. Cold-sprayed Zn-6Cu deposit was constituted by irregular flattening particles and pores after heat treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!