Existing multi-person reconstruction methods require the human bodies in the input image to occupy a considerable portion of the picture. However, low-resolution human objects are ubiquitous due to trade-off between the field of view and target distance given a limited camera resolution. In this paper, we propose an end-to-end multi-task framework for multi-person inference from a low-resolution image (MILI). To perceive more information from a low-resolution image, we use pair-wise images at high resolution and low resolution for training, and design a restoration network with a simple loss for better feature extraction from the low-resolution image. To address the occlusion problem in multi-person scenes, we propose an occlusion-aware mask prediction network to estimate the mask of each person during 3D mesh regression. Experimental results on both small-scale scenes and large-scale scenes demonstrate that our method outperforms the state-of-the-art methods both quantitatively and qualitatively. The code is available at http://cic.tju.edu.cn/faculty/likun/projects/MILI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11197753 | PMC |
http://dx.doi.org/10.1016/j.fmre.2023.02.006 | DOI Listing |
Nat Biotechnol
January 2025
Department of Automation, Tsinghua University, Beijing, China.
Super-resolution (SR) neural networks transform low-resolution optical microscopy images into SR images. Application of single-image SR (SISR) methods to long-term imaging has not exploited the temporal dependencies between neighboring frames and has been subject to inference uncertainty that is difficult to quantify. Here, by building a large-scale fluorescence microscopy dataset and evaluating the propagation and alignment components of neural network models, we devise a deformable phase-space alignment (DPA) time-lapse image SR (TISR) neural network.
View Article and Find Full Text PDFPhys Med Biol
January 2025
Charles Sturt University, Albury-Wodonga, NSW, Albury, New South Wales, 2640, AUSTRALIA.
Bone is a common site for the metastasis of malignant tumors, and Single Photon Emission Computed Tomography (SPECT) is widely used to detect these metastases. Accurate delineation of metastatic bone lesions in SPECT images is essential for developing treatment plans. However, current clinical practices rely on manual delineation by physicians, which is prone to variability and subjective interpretation.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK.
A generative adversarial network (GAN) makes it possible to map a data sample from one domain to another one. It has extensively been employed in image-to-image and text-to image translation. We propose an EEG-to-EEG translation model to map the scalp-mounted EEG (scEEG) sensor signals to intracranial EEG (iEEG) sensor signals recorded by foramen ovale sensors inserted into the brain.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Laboratory of Adaptive Lighting Systems and Visual Processing, Technical University of Darmstadt, Hochschulstr. 4a, 64289 Darmstadt, Germany.
Thermopile sensor arrays provide a sufficient counterbalance between person detection and localization while preserving privacy through low resolution. The latter is especially important in the context of smart building automation applications. Current research has shown that there are two machine learning-based algorithms that are particularly prominent for general object detection: You Only Look Once (YOLOv5) and Detection Transformer (DETR).
View Article and Find Full Text PDFJ Imaging
January 2025
School of Artificial Intelligence, Changchun University of Science and Technology, Changchun 130012, China.
For surveillance video management in university laboratories, issues such as occlusion and low-resolution face capture often arise. Traditional face recognition algorithms are typically static and rely heavily on clear images, resulting in inaccurate recognition for low-resolution, small-sized faces. To address the challenges of occlusion and low-resolution person identification, this paper proposes a new face recognition framework by reconstructing Retinaface-Resnet and combining it with Quality-Adaptive Margin (adaface).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!