Ferroelectric materials have become key components for versatile device applications, and their thin films are highly desirable for integrating the miniaturized devices. Despite substantial endeavors, it is still challenging to achieve effective chemiresistive sensing in the ferroelectric films. Here, for the first time, we have exploited ferroelectric thin films of 2D hybrid perovskite BAEAPbI (), to fabricate the high-performance chemiresistor gas sensors. The spin-coated films of exhibit high orientation and good crystallinity, thus preserving robust in-plane spontaneous polarization ( ∼2.0 C/cm) and low electric coercivity. Notably, such ferroelectric film-based sensors after electric poling enable the dramatic room-temperature sensing responses to NO gas, including high sensitivity (0.05 ppm), extremely low detection limit (1 ppm) and fast responding rate (∼6 s). Besides, the chemiresistive responses are remarkably enhanced by threefold (up to 320%) through electric poling. It is proposed that this behavior closely involves with strong in-plane ferroelectric polarization of that generates a built-in electric field inhibiting the recombination of charge carriers. As far as we know, this ferroelectric-based film chemiresisor is one of the best room-temperature sensors for NO gas among all the existing candidate materials. These findings highlight great potential of ferroelectrics toward effective chemiresistive performances, and also establish a bright direction to explore their future device applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11197688 | PMC |
http://dx.doi.org/10.1016/j.fmre.2022.01.015 | DOI Listing |
Mater Horiz
January 2025
Department of Physics, Pukyong National University, Busan 48513, Korea.
Altermagnetism is a new class of material with zero net magnetization, but having a nonrelativistic spin-split band structure. Here, we investigate the multifunctional properties of the hexagonal wurtzite MnO (-MnO). -MnO has a direct band gap of 0.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura C3, Nishikyo-ku, Kyoto 615-8540, Japan.
The measurement of thermal conductivities of anisotropic materials and atomically thin films is pivotal for the thermal design of next-generation electronic devices. Frequency-domain thermoreflectance (FDTR) is a pump-probe technique that is known for its accurate and straightforward approach to determining thermal conductivity and stands out as one of the most effective methodologies. Existing research has focused on advancing a measurement system that incorporates beam-offset FDTR.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
High-performance bulk graphite (HPBG) that simultaneously integrates superior electrical conductivity and excellent strength is in high demand, yet it remains critical and challenging. Herein a novel approach is introduced utilizing MOF-derived nanoporous metal/carbon composites as precursors to circumvent this traditional trade-off. The resulting bulk graphite, composed of densely packed multilayered graphene sheets functionalized with diverse cobalt forms (nanoparticles, single atoms, and clusters), exhibits unprecedented electrical conductivity in all directions (in-plane: 7311 S cm⁻¹, out-of-plane: 5541 S cm⁻¹) and excellent mechanical strength (flexural: 101.
View Article and Find Full Text PDFNat Commun
January 2025
Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
Micro actuators are widely used in NEMS/MEMS for control and sensing. However, most are designed with suspended beams anchored at fixed points, causing two main issues: restricted actuated stroke and movement modes, and reduced lifespan due to fatigue from repeated beam deformation, contact wear and stiction. Here, we develop an electrostatic in-plane actuator leveraging structural superlubric sliding interfaces, characterized by zero wear, ultralow friction, and no fixed anchor.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!