Introduction: Periodontitis, a persistent inflammatory condition, results in the deterioration of both the hard and soft tissues in the periodontium, leading to the formation of intrabony defects. Restoring the lost tissues, particularly bone, is possible through tissue engineering techniques utilizing scaffolds made from different polymers. Consequently, this research focuses on creating and assessing a scaffold infused with alginate (Sigma Aldrich, Gillingham, UK) and carrageenan (Sigma Aldrich, Gillingham, UK) for the purpose of bone regeneration.
Methods: An in vitro investigation was conducted to assess the characteristics of the recently formulated scaffold. Spectroscopic analysis, tensile strength testing, scanning electron microscopy (SEM) analysis, and degradation testing were carried out to evaluate both the physical and biological attributes of the scaffold.
Results: IBM SPSS Statistics for Windows, V. 1.2 (IBM Corp., Armonk, NY, USA) was used for statistical analysis. A one-way ANOVA test was done to determine the significance of tensile strength, and a paired t-test was done to check the significance of the degradation test. The in vitro research unveiled notable distinctions in the physical and biological attributes between the scaffold infused with alginate and carrageenan and the PerioCol® (p<0.05).
Conclusion: The scaffold incorporating alginate and carrageenan demonstrated superior outcomes concerning parameters such as tensile stress and strain, degradation rate, percentage bone volume, and object surface density when contrasted with the conventional PerioCol®. Therefore, the scaffold infused with alginate and carrageenan emerges as a promising candidate for bone regeneration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11200317 | PMC |
http://dx.doi.org/10.7759/cureus.61139 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!