The preparation of stable large pore aluminophosphate (AlPO) zeotypes offers materials for applications in adsorption and catalysis. Here we report the synthesis of the pure AlPO with the SAO topology type (AlPO STA-1) using ,'-diethylbicyclo[2.2.2]oct-7-ene-2,3:5,6-dipyrrolidine (DEBOP) as the organic structure directing agent in the presence of fluoride. The AlPO STA-1 can be rendered microporous (pore volume 0.36 cm g) calcination and the calcined form remains stable in the presence of moisture. The structure of the dehydrated form has been established by Rietveld refinement (tetragonal 4̄2, = 13.74317(10) Å, = 21.8131(5) Å, = 4119.94(16) Å). Multinuclear Al and P MAS NMR, together with 2D COSY and CASTEP NMR calculations, enables resolution and assignment of the signals from all crystallographically distinct Al and P framework sites. Structural elucidation of the as-prepared aluminophosphate-fluoride is more challenging, because of the presence of partially protonated OSDA molecules in the 3D-connected channel system and in particular because the fluoride ions coordinate with positional disorder to some of the Al atoms to give 5-fold as well as tetrahedrally-coordinated framework Al species. These are postulated to occupy Al-F-Al bridging sites, where they are responsible for distortion of the framework [4̄2, = 13.3148(9) Å, = 22.0655(20) Å, = 3911.9(7) Å]. Calcination and removal of fluoride ions and OSDAs allows the framework to expand to its relaxed configuration. The SAO topology type aluminophosphate can also be synthesised with small amounts of Si and Ge in the framework, and these SAPO and GeAPO STA-1 materials are also stable to template removal. IR spectroscopy with CO as a probe at 123 K indicates all have weak-to-mild acidity, increasing in the order AlPO < GeAPO < SAPO. These STA-1 materials have been investigated for their activity in the Beckmann rearrangement of cyclohexanone oxime to ε-caprolactam at 598 K: while all are active, the AlPO form is favoured due to its high selectivity and slow deactivation, both of which are a consequence of its very weak acid strength, which is nevertheless sufficient to catalyse the reaction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11197783 | PMC |
http://dx.doi.org/10.1039/d4ta01132e | DOI Listing |
Sci Rep
January 2025
Department of Energy Resources, University of Stavanger, Stavanger, Norway.
Salt caverns are widely regarded as a suitable option for the underground storage of hydrogen. However, an accurate assessment of the hydrogen leakage through the walls of salt caverns into the surrounding formations remains crucial. In this work, the flow of hydrogen into the surrounding formation is evaluated by assuming that salt rock consists of bundles of tortuous nano-capillary tubes.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Loyola College, Affiliated to the University of Madras, Chennai, 600034, India.
This study involves a novel CuO/CoFe₂O₄/MWCNTs (CCT) nanocomposite, developed by integrating cobalt ferrite (CoFe₂O₄) and copper oxide (CuO) nanoparticles onto multi-walled carbon nanotubes (MWCNTs), for the degradation of tetracycline (TC) under visible light. The photocatalyst was extensively characterized using XRD, HR-SEM, EDX, HR-TEM, UV-Vis, BET, and PL analysis. The synthesized CoFe₂O₄ and CuO nanoparticles exhibited crystallite sizes of 46.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea.
Neuroprosthetics equipped with artificial synapses hold promise to address some most intricate medical problems, such as human sensory disorders. Yet, it is necessitated and of paramount importance for neuroprosthetics to be able to differentiate significant and insignificant signals. Here, we present an information-filterable artificial retina system that integrates artificial synapses with a signal-integration device for signal perception and processing with attention.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry Chinese Academy of Sciences, Taiyuan, China.
To confront the energy consumption, high performance membrane materials are urgently needed. Carbon molecular sieve (CMS) membranes exhibit superior capability in separating gas mixtures efficiently. However, it remains a grand challenge to precisely tune the pore size and distribution of CMS membranes to further improve their molecular sieving properties.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
Exosomes, which are considered nanoscale extracellular vesicles (EVs), are secreted by various cell types and widely distributed in different biological fluids. They consist of multifarious bioactive molecules and use systematic circulation for their transfer to adjoining cells. This phenomenon enables exosomes to take part in intercellular and intracellular communications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!