Organic-inorganic hybrid perovskite solar cells (PSCs) have attracted extensive attention, and their certified power conversion efficiency (PCE) has reached 25.5%. However, the instability of the high-efficiency 3-dimensional (3D) perovskite against ambient conditions (moisture, light and thermal) and the existing defects severely limit its practical applications and commercialization. Unlike 3D perovskites, the large hydrophobic spacer cations in low-dimensional (2D, 1D, and 0D) perovskites are able to effectively improve the stability, but they also weaken the light absorption range and hinder charge transport. The construction of a low-dimensional/3D perovskite multidimensional structure, which can combine the advantages of the high stability of low-dimensional perovskites and the superior efficiency of 3D perovskites, is proposed to achieve high efficiency and ultrastability. Moreover, the proper incorporation of low-dimensional perovskite into 3D perovskite can passivate defects and inhibit ion migration. Herein, this article summarizes the recent research progress of low-dimensional/3D perovskite multidimensional structures for PSCs and provides some perspectives toward developing stable and efficient PSCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11197607 | PMC |
http://dx.doi.org/10.1016/j.fmre.2021.07.003 | DOI Listing |
ACS Nano
January 2025
Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.
Perovskite solar cells (PSCs) have emerged as low-cost photovoltaic representatives. Constructing three-dimensional (3D)/two-dimensional (2D) perovskite heterostructures has been shown to effectively enhance the efficiency and stability of PSCs. However, further enhancement of device performance is still largely limited by inferior conductivity of the 2D perovskite capping layer and its mismatched energy level with the 3D perovskite layer.
View Article and Find Full Text PDFAdv Mater
January 2025
Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
Porous lead iodide (PbI) film is crucial for the complete reaction between PbI and ammonium salts in sequential-deposition technology so as to achieve high crystallinity perovskite film. Herein, it is found that the tensile stress in tin (IV) oxide (SnO) electron transport layer (ETL) is a key factor influencing the morphology and crystallization of PbI films. Focusing on this, lithium trifluoromethanesulfonate (LiOTf) is used as an interfacial modifier in the SnO/PbI interface to decrease the tensile stress to reduce the necessary critical Gibbs free energy for PbI nuclei formation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute of Advanced Materials (INAM), Universitat Jaume I, Av. Vicent Sos Baynat, s/n, 12071 Castellón de la Plana, Spain.
High defect concentrations at the interfaces are the basis of charge extraction losses and instability in perovskite solar cells. Surface engineering with organic cations is a common practice to solve this issue. However, the full implications of the counteranions of these cations for device functioning are often neglected.
View Article and Find Full Text PDFACS Nano
January 2025
State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, Faculty of Integrated Circuit, Xidian University, 710071 Xi'an, China.
Flexible perovskite solar cells (FPSCs) have advanced significantly because of their excellent power-per-weight performance and affordable manufacturing costs. The unsatisfactory efficiency and mechanical stability of FPSCs are bottleneck challenges that limit their application. Here, we explore the use of octylammonium acetate (OAAc) with a long, intrinsic, flexible molecular chain on perovskite films for surface adhesion and mechanical releasing.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Physics, Riphah International University, Islamabad 44000, Pakistan.
Halide perovskites are a class of materials with excellent potential for solar cell applications due to their excellent optical and electronic properties. In this study, strain-dependent physical properties of SrNBr perovskites are investigated and theoretical results are reported here. The structural properties indicate that SrNBr has a cubic structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!