Providing accurate crop yield estimations at large spatial scales and understanding yield losses under extreme climate stress is an urgent challenge for sustaining global food security. While the data-driven deep learning approach has shown great capacity in predicting yield patterns, its capacity to detect and attribute the impacts of climatic extremes on yields remains unknown. In this study, we developed a deep neural network based multi-task learning framework to estimate variations of maize yield at the county level over the US Corn Belt from 2006 to 2018, with a special focus on the extreme yield loss in 2012. We found that our deep learning model hindcasted the yield variations with good accuracy for 2006-2018 (R = 0.81) and well reproduced the extreme yield anomalies in 2012 (R = 0.79). Further attribution analysis indicated that extreme heat stress was the major cause for yield loss, contributing to 72.5% of the yield loss, followed by anomalies of vapor pressure deficit (17.6%) and precipitation (10.8%). Our deep learning model was also able to estimate the accumulated impact of climatic factors on maize yield and identify that the silking phase was the most critical stage shaping the yield response to extreme climate stress in 2012. Our results provide a new framework of spatio-temporal deep learning to assess and attribute the crop yield response to climate variations in the data rich era.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11197588PMC
http://dx.doi.org/10.1016/j.fmre.2022.05.006DOI Listing

Publication Analysis

Top Keywords

deep learning
20
yield
13
maize yield
12
yield loss
12
detect attribute
8
yield losses
8
spatio-temporal deep
8
crop yield
8
extreme climate
8
climate stress
8

Similar Publications

Powder X-ray diffraction (PXRD) is a prevalent technique in materials characterization. While the analysis of PXRD often requires extensive human manual intervention, and most automated method only achieved at coarse-grained level. The more difficult and important task of fine-grained crystal structure prediction from PXRD remains unaddressed.

View Article and Find Full Text PDF

β-secretase (BACE1) is instrumental in amyloid-β (Aβ) production, with overexpression noted in Alzheimer's disease (AD) neuropathology. The interaction of Aβ with the receptor for advanced glycation endproducts (RAGE) facilitates cerebral uptake of Aβ and exacerbates its neurotoxicity and neuroinflammation, further augmenting BACE1 expression. Given the limitations of previous BACE1 inhibition efforts, the study explores reducing BACE1 expression to mitigate AD pathology.

View Article and Find Full Text PDF

Mobile Ad Hoc Networks (MANETs) are increasingly replacing conventional communication systems due to their decentralized and dynamic nature. However, their wireless architecture makes them highly vulnerable to flooding attacks, which can disrupt communication, deplete energy resources, and degrade network performance. This study presents a novel hybrid deep learning approach integrating Convolutional Neural Networks (CNN) with Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures to effectively detect and mitigate flooding attacks in MANETs.

View Article and Find Full Text PDF

Adaptive deep brain stimulation (DBS) provides individualized therapy for people with Parkinson's disease (PWP) by adjusting the stimulation in real-time using neural signals that reflect their motor state. Current algorithms, however, utilize condensed and manually selected neural features which may result in a less robust and biased therapy. In this study, we propose Neural-to-Gait Neural network (N2GNet), a novel deep learning-based regression model capable of tracking real-time gait performance from subthalamic nucleus local field potentials (STN LFPs).

View Article and Find Full Text PDF

This study presents a novel approach to identifying meters and their pointers in modern industrial scenarios using deep learning. We developed a neural network model that can detect gauges and one or more of their pointers on low-quality images. We use an encoder network, jump connections, and a modified Convolutional Block Attention Module (CBAM) to detect gauge panels and pointer keypoints in images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!