A Review of Machine Learning Approaches for Brain Positron Emission Tomography Data Analysis.

Nucl Med Mol Imaging

Department of Biostatistics, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 1100, Nashville, TN 37203 USA.

Published: June 2024

Positron emission tomography (PET) imaging has moved forward the development of medical diagnostics and research across various domains, including cardiology, neurology, infection detection, and oncology. The integration of machine learning (ML) algorithms into PET data analysis has further enhanced their capabilities of including disease diagnosis and classification, image segmentation, and quantitative analysis. ML algorithms empower researchers and clinicians to extract valuable insights from complex big PET datasets, which enabling automated pattern recognition, predictive health outcome modeling, and more efficient data analysis. This review explains the basic knowledge of PET imaging, statistical methods for PET image analysis, and challenges of PET data analysis. We also discussed the improvement of analysis capabilities by combining PET data with machine learning algorithms and the application of this combination in various aspects of PET image research. This review also highlights current trends and future directions in PET imaging, emphasizing the driving and critical role of machine learning and big PET image data analytics in improving diagnostic accuracy and personalized medical approaches. Integration between PET imaging will shape the future of medical diagnosis and research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11196571PMC
http://dx.doi.org/10.1007/s13139-024-00845-6DOI Listing

Publication Analysis

Top Keywords

machine learning
16
data analysis
16
pet imaging
16
pet data
12
pet image
12
pet
11
positron emission
8
emission tomography
8
learning algorithms
8
big pet
8

Similar Publications

Who is coming in? Evaluation of physician performance within multi-physician emergency departments.

Am J Emerg Med

January 2025

Department of Emergency Medicine, Yale University School of Medicine, New Haven, CT, USA; Center for Outcomes Research and Evaluation, Yale University, New Haven, CT, USA.

Background: This study aimed to examine how physician performance metrics are affected by the speed of other attendings (co-attendings) concurrently staffing the ED.

Methods: A retrospective study was conducted using patient data from two EDs between January-2018 and February-2020. Machine learning was used to predict patient length of stay (LOS) conditional on being assigned a physician of average speed, using patient- and departmental-level variables.

View Article and Find Full Text PDF

Background: Large language models (LLMs) have been proposed as valuable tools in medical education and practice. The Chinese National Nursing Licensing Examination (CNNLE) presents unique challenges for LLMs due to its requirement for both deep domain-specific nursing knowledge and the ability to make complex clinical decisions, which differentiates it from more general medical examinations. However, their potential application in the CNNLE remains unexplored.

View Article and Find Full Text PDF

Prediction of Thermodynamic Properties of C-Based Fullerenols Using Machine Learning.

J Chem Theory Comput

January 2025

Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China.

Traditional machine learning methods face significant challenges in predicting the properties of highly symmetric molecules. In this study, we developed a machine learning model based on graph neural networks (GNNs) to accurately and swiftly predict the thermodynamic and photochemical properties of fullerenols, such as C(OH) ( = 1 to 30). First, we established a global method for generating fullerenol isomers through isomer fingerprinting, which can generate all possible isomers or produce diverse structural types on demand.

View Article and Find Full Text PDF

This study investigates the geochemical characteristics of rare earth elements (REEs) in highland karstic bauxite deposits located in the Sierra de Bahoruco, Pedernales Province, Dominican Republic. These deposits, formed through intense weathering of volcanic material, represent a potentially valuable REE resource for the nation. Surface and subsurface soil samples were analyzed using portable X-ray fluorescence (pXRF) and a NixPro 2 color sensor validated with inductively coupled plasma optical emission spectrometry (ICP-OES).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!