Natural MOF-Like Photocatalytic Nanozymes Alleviate Tumor Pressure for Enhanced Nanodrug Penetration.

Adv Healthc Mater

State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, China.

Published: June 2024

In oncological nanomedicine, overcoming the dual-phase high interstitial pressure in the tumor microenvironment is pivotal for enhancing the penetration and efficacy of nanotherapeutics. The elevated tumor interstitial solid pressure (TISP) is largely attributed to the overaccumulation of collagen in the extracellular matrix, while the increased tumor interstitial fluid pressure (TIFP) stems from the accumulation of fluid due to the aberrant vascular architecture. In this context, metal-organic frameworks (MOFs) with catalytic efficiency have shown potential in degrading tumor interstitial components, thereby reducing interstitial pressure. However, the potential biotoxicity of the organic components of MOFs limits their clinical translation. To circumvent this, a MOF-like photocatalytic nanozyme, RPC@M, using naturally derived cobalt phytate (CoPA) and resveratrol (Res) is developed. This nanozyme not only facilitates the decomposition of water in the tumor interstitium under photoactivation to reduce TIFP, but also generates an abundance of reactive oxygen species through its peroxidase-like activity to exert cytotoxic effects on tumor cells. Moreover, Res contributes to the reduction of collagen deposition, thereby lowering TISP. The concurrent diminution of both TISP and TIFP by RPC@M leads to enhanced tumor penetration and potent antitumor activity, presenting an innovative approach in constructing tumor therapeutic nanozymes from natural products.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.202400596DOI Listing

Publication Analysis

Top Keywords

tumor interstitial
12
tumor
9
mof-like photocatalytic
8
interstitial pressure
8
pressure
5
interstitial
5
natural mof-like
4
photocatalytic nanozymes
4
nanozymes alleviate
4
alleviate tumor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!