Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Electrical impedance tomography (EIT) is a non-radiation, non-invasive visual diagnostic technique. In order to improve the imaging resolution and the removing artifacts capability of the reconstruction algorithms for electrical impedance imaging in human-chest models, the HMANN algorithm was proposed using the Hadamard product to optimize multilayer artificial neural networks (MANN). The reconstructed images of the HMANN algorithm were compared with those of the generalized vector sampled pattern matching (GVSPM) algorithm, truncated singular value decomposition (TSVD) algorithm, backpropagation (BP) neural network algorithm, and traditional MANN algorithm. The simulation results showed that the correlation coefficient of the reconstructed images obtained by the HMANN algorithm was increased by 17.30% in the circular cross-section models compared with the MANN algorithm. It was increased by 13.98% in the lung cross-section models. In the lung cross-section models, some of the correlation coefficients obtained by the HMANN algorithm would decrease. Nevertheless, the HMANN algorithm retained the image information of the MANN algorithm in all models, and the HMANN algorithm had fewer artifacts in the reconstructed images. The distinguishability between the objects and the background was better compared with the traditional MANN algorithm. The algorithm could improve the correlation coefficient of the reconstructed images, and effectively remove the artifacts, which provides a new direction to effectively improve the quality of the reconstructed images for EIT.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208659 | PMC |
http://dx.doi.org/10.7507/1001-5515.202305047 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!