A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

[Research of electrical impedance tomography based on multilayer artificial neural network optimized by Hadamard product for human-chest models]. | LitMetric

[Research of electrical impedance tomography based on multilayer artificial neural network optimized by Hadamard product for human-chest models].

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi

The Key Laboratory of Intelligent Operation and Maintenance Technology & Equipment for Urban Rail Transit of Zhejiang Province, Institute of Precision Machinery and Smart Structure, College of Engineering, Zhejiang Normal University, Jinhua, Zhejiang 321004, P. R. China.

Published: June 2024

Electrical impedance tomography (EIT) is a non-radiation, non-invasive visual diagnostic technique. In order to improve the imaging resolution and the removing artifacts capability of the reconstruction algorithms for electrical impedance imaging in human-chest models, the HMANN algorithm was proposed using the Hadamard product to optimize multilayer artificial neural networks (MANN). The reconstructed images of the HMANN algorithm were compared with those of the generalized vector sampled pattern matching (GVSPM) algorithm, truncated singular value decomposition (TSVD) algorithm, backpropagation (BP) neural network algorithm, and traditional MANN algorithm. The simulation results showed that the correlation coefficient of the reconstructed images obtained by the HMANN algorithm was increased by 17.30% in the circular cross-section models compared with the MANN algorithm. It was increased by 13.98% in the lung cross-section models. In the lung cross-section models, some of the correlation coefficients obtained by the HMANN algorithm would decrease. Nevertheless, the HMANN algorithm retained the image information of the MANN algorithm in all models, and the HMANN algorithm had fewer artifacts in the reconstructed images. The distinguishability between the objects and the background was better compared with the traditional MANN algorithm. The algorithm could improve the correlation coefficient of the reconstructed images, and effectively remove the artifacts, which provides a new direction to effectively improve the quality of the reconstructed images for EIT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208659PMC
http://dx.doi.org/10.7507/1001-5515.202305047DOI Listing

Publication Analysis

Top Keywords

hmann algorithm
24
reconstructed images
20
mann algorithm
16
algorithm
14
electrical impedance
12
cross-section models
12
impedance tomography
8
multilayer artificial
8
artificial neural
8
neural network
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!